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WHATIS is a WINPEPI program (Abramson 2004), part of the PEPI suite of computer 

programs for epidemiologists.  (“PEPI” is an acronym for “Programs for 

EPIdemiologists”.) 

 

WHATIS is a "ready reckoner" utility program, providing an expression evaluator 

and calculators for p-values (and their inverse), confidence intervals, and time  

spans. It has four modules. 
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FINDING WHAT YOU WANT 
 

FINDER.PDF (provided with this program) is an alphabetical index that identifies the modules (in all 

WinPepi programs) that deal with a specific procedure or kind of study.  It is called up by pressing F9 or 

clicking on “Finder” in any WinPepi program, or on the FINDER icon, and can be printed for easy 

reference. 

 

 

WORDS OF CAUTION 
 

This program offers more options than most users will need, and may display more results than are needed.  

Ignore the options and results you don't require. 
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HOW TO USE WHATIS 

 
 

WHATIS can be run in any version of Windows except Windows 3. 

  
Choose a module, by clicking on its name in the top menu, and follow the on-screen instructions.   

 

Recalling results: 
 

Click on “View” in the top menu to display the current session’s previous results 
 
Pasting results: 
 

Results shown on the screen are automatically copied to the Windows clipboard, from which they can be 
pasted into a Microsoft Word or other text file at the site of the cursor (usually by  pressing Shift-Insert or 

Ctrl-V. To ensure proper alignment of tabulated results, a Courier or similar font should be used in the text 

file. If  the current session’s previous results are recalled (by clicking on “View”), text can be marked (drag 

the mouse over it with button pressed) and copied to the clipboard (by pressing Ctrl-Insert or Ctrl-C) for 

pasting elsewhere. 

 

Adding comments: 
 

Click on  “Note” in the top menu if you wish to add explanatory comments to be placed in the clipboard, 

saved, or printed with the results. 

 

Saving results: 
 
By default, all results of Pepi-for-Windows programs are saved in PEPI.TXT in the Winpepi folder, with a 

warning if it exceeds 500K.  Results also go to PEPI.TMP (for display in the 'View' option); this file may 

be overwritten unless it is renamed on quitting WHATIS.  Click on “Saving” (in the top menu) to see the 

default procedure or to alter it, or to find a button that opens PEPI.TXT (which can also be accessed by 

clicking on “Results” in the Winpepi portal). 

[Results saved in earlier installations may be found in C:\PEPI.TXT]. 

TXT files can be combined by using JOINTEXT, supplied with the Winpepi package. 

  

Printing: 
 
Click on "Print".  If this fails, a simple solution is to  paste the currently-shown results (which have 

automatically been copied to the Windows clipboard) into a Microsoft Word or other text program, and 

print from there. To ensure proper alignment of tabulated results, a Courier or similar font should be used 
in the text file. Results can also be printed from one of the files in which they are automatically saved, e.g. 

PEPI.TXT.   
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A DO-IT-YOURSELF THREESOME 

 
1.  The WinPepi suite of computer programs for epidemiologists, with their manuals. Can be downloaded 
free at  www.brixtonhealth.com 

 

2.  “Research Methods in Community Medicine: Surveys, Epidemiological Research, Programme 

Evaluation, Clinical Trials” (J.H. Abramson and Z.H. Abramson), sixth edition. John Wiley & Sons, 2008. 

 

3.  “Making Sense of Data: A Self-Instruction Manual on the Interpretation of Epidemiological Data” (J.H. 

Abramson and Z.H.Abramson), third edition. Oxford: Oxford University Press 2001. 

 

  

 

 

 
HOW TO OBTAIN PEPI PROGRAMS 

 

All WINPEPI (PEPI-for-Windows)  and other  PEPI programs can be downloaded free.  The latest versions 

of WINPEPI programs – currently COMPARE2, DESCRIBE, ETCETERA, LOGISTIC, PAIRSetc, 

POISSON, and WHATIS – can be downloaded from www.brixtonhealth.com. The latest release of Version 

4 of PEPI, which contains over 40 DOS-based programs (which can be used in Windows) can be 

downloaded from www.sagebrushpress.com/pepibook.html 

 

COMPARE2, DESCRIBE, ETCETERA, LOGISTIC, PAIRSetc,  POISSON, and WHATIS are distributed 
with manuals (as computer files).  A printed manual is available for the earlier DOS-based programs 

(Abramson and Gahlinger 2001)  

 

WINPEPI programs are provided with no liability to users and without any warranties, whether 

expressed or implied.  They are copyrighted, but may be freely copied and distributed for personal 

use; they may not be exploited commercially without permission.   
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CALCULATOR 
 
This is an expression evaluator, whose special feature is that it can save up to 24 values 

and 24 formulae, storing them in a disk file that it creates for this purpose, enabling 

stored results, constants, and formulae to be recalled and used (in the same or a 

subsequent session) by entering labels (a, b, etc.) that represent them.  This avoids 

repeated entry of the same numbers (e.g. population denominators), facilitates the 

performance of calculations in stages (by saving intermediate results for use in the next 

stage), and permits recomputation of stored formulae, using new data. An optional BMI 

(body mass index) calculator is provided. 

 

 

Expressions 
 

Enter the expression to be solved, e.g.:    
 

1367+6755 
 

Spaces are not permissible within expressions.  Use of capitals is optional. Numbers can 
optionally be entered in scientific notation, e.g. as 1.3E6 instead of 1300000, or 1.3E-4 
instead of 0.00013. 

 

Two or more expressions may be entered, separated by spaces, e.g.:  
 

sq(234.2)  sq(638) 

 

Optionally, a label may be attached to any expression, to store the value or formula. If 
 

a=sq(234.2) b=sq(638) c=sqrt(a+b) 

 

is entered, the three results are stored as a, b, and c, respectively, and the formula  
sqrt(a + b) is saved as @c.  A list of stored values and formulae can be brought up by 
clicking on “Memory”. 
 

The number of decimal places displayed can be changed. 
 

Any number of nested parentheses may be used, for example.  
 

sqrt(7x(43-(62/(7.4-sqr(1.44-0.5))))) 
 

The values in the innermost parentheses are computed first, and multiplication and 
division are performed before addition and subtraction: 4+5*6-3*2^3/(8-1) is treated as 
4+(5*6)-(3*(2^3)/7). 
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Symbols and functions 

 

The following symbols may be used:  

+ addition 

- subtraction, or a negative value   

* , x multiplication 

/ division 

^ exponentiation;  22^3 is 22 to the power of 3, or 
22-cubed;   22^(1/3) is the cube root of 22; 22^(-
1) is the reciprocal of 22, i.e. 1/22. 

! factorial; this must follow the value to which it 
refers 

 

The following functions may be used; they must be followed by a value or expression in 
parentheses, e.g. sq(12.1) or  sqrt(45-22). 

sq, sqr square 

sqrt square root 

ln, log natural log 

exp antilog of natural log 

lg log to base 10 

alg antilog (exponential of log to base 10) 

abs absolute value 

arctan arctangent 

cos cosine 

sin sine 

  

Arctan, cos, and sin refer to radians (1

 = pi/180 radians). If other trigonometric functions 

are needed, the formulae are: 

tan = sin/cos 

cot = 1/tan 

arcsin(x) = arctan(x/(sqrt(1-sqr(x))) 

sec = 1/cos 

cosec = 1/sin 

arccos(x) = arctan(sqrt(1-sqr(x))/x) 
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Constants 

 

Two constants may be used (in addition to those set by labelling values):  

e 2.71828...; the base of natural logs 

pi 3.14159... 

  

 

Labels (for storage of values or formulae) 
 

To store a value or formula in memory, all that need be done is to prefix a label.  The 
label may be any letter except ‘e’ or ‘x’, and must be prefixed to the value or formula, 
with ‘=’ and no spaces, e.g. (for a value) b=1.334 or (for a formula) t=ln(4.3)x4.  The 
entered or computed value will then be “remembered” until it is erased or the label is re-
allocated.  The label can be used to represent the value in subsequent expressions entered 
on the same line or when WHATIS is used again, whether in the same computer session 
or a later one. 

 

Constants, such as population denominators for the calculation of rates, can be labelled 
and stored for later use. 

 

The use of labels avoids repeated entry of the same value.  For example, suppose you 
wish to compute 95% and 99% confidence limits for a value of 3.468, with a standard 
error of 1.213, using the formulae 

 

Lower 95% limit = 3.468 - (1.213 x 1.96)    
Upper 95% limit = 3.468 + (1.213 x 1.96) 

Lower 99% limit = 3.468 - (1.213 x 2.576)    
Upper 99% limit = 3.468 + (1.213 x 2.576) 

 

One way is to enter the four expressions in exactly the above format: 
 

3.468-1.213x1.96 3.468+1.213x1.96 3.468-1.213x2.576 3.468+1.213x2.576 

 

(Note that "3.468-1.213x1.96" is equivalent to "3.468-(1.213x1.96)", because 
multiplication is performed before addition.) 

 

To avoid repeated entry of 3.468 and 1.213, labels (e.g. a and b) can be attached to these 
two values, for use in subsequent formulae: 

 

a=3.468 b=1.213 a-(b*1.96) a+(b*1.96) a-(b*2.576) a+(b*2.576) 

 

Labels can also be attached to formulae.  The formula can then be recalled and 
recomputed on a subsequent occasion by putting @ in front of the label.  In the above 
example, the four formulae might be labelled f, g, h, and i: 

 

a=3.468 b=1.213 f=a-(b*1.96) g=a+(b*1.96) h=a-(b*2.576) i=a+(b*2.576) 
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The computed values are then stored as f, g, h and i.  The formulae are stored as @f, @g, 
@h and @i.  To compute the confidence intervals of 5.555 (standard error, 2.222) it is 
enough to enter these two new values of a and b, and invoke formulae f, g, h, and i:  

 

a=5.555 b=2.222 @f @g @h @i 
 

The use of labels also permits complicated computations to be done in stages - 
intermediate results can be labelled for use in subsequent stages of the calculation, 
performed on the same line or by running the calculator again. As a simple example of a 
‘chain’ of formulae: 

 

p=4 q=p*3 r=q/2 s=sq(r)/2 

 

The stored values will then be: p=4; q=12; r=6; s=18.  In addition, p*3 is saved as @q, 
q/2 as @r, and sq(r)/2 as @s. 

 

When a formula is recomputed, so are all the variables specifically mentioned in it.  After 
entry of the above chain, subsequent entry of 

 

p=2 @r 

 

will change p to 2 and recompute both q and r (q is recomputed because it is mentioned 
in formula @r), yielding q=6 and r=3.  But entry of 

 

p=6 @s 

 

will not recompute s correctly, because although r is specifically mentioned in formula 
@s, q is not (and the previous value of q (i.e., 12) will therefore be used.  For safety, it is 
important to specify all the formulae in a chain - i.e. 

 

p=6 @q @r @s 

 

This will change the value of p and correctly recompute q, r, and s.  
 

A label prefixed by @ cannot be used in an expression.    
 

P=8 @q/2 is wrong  

P=8 @q q/2 is correct. 
 

A list of the stored values and formulae can be brought up by clicking on “Memory”. 
 
Entry of f= g= will erase the specific values f and g. 

 

Factorial function 
 

The factorial n! is the number of possible arrangements of n items; e.g. if there are three 
items (a, b and c), 3! = 6 , i.e. abc, acb, bac, bca, cab and cba. 

 



                                                                 P-VALUE                                                

8 

The program uses Brenner's algorithm (Ball 1978: 215) to compute factorials for 
numbers up to 275 and Stirling's approximation (Rothman and Boice 1982: 26) for larger 
numbers.  (We are grateful to Ray Simons for bringing Brenner's procedure to our 
notice). 

 

The program can compute factorials for positive integers up to 1,754. Factorials are also 
displayed for fractional numbers; these may be helpful if gamma functions are required, since 
the factorial of any positive number x may be taken as the gamma function at point (x + 1) 
(Hoel 1984: 88; Abramowitz and Stegun 1970: 255). 

 

Permutations and combinations 
 

The program can compute permutations and combinations if the total number of items in 
the set is up to 1,754. 

 

The number of possible subsets of r items (ignoring their arrangement) drawn from a set 
of n items is comb(n,r); for example, if n = 3 and  r = 2, there are comb(3,2) = 3 possible 
subsets (a and b, a and c, b and c); comb(n,r) is the binomial coefficient ('n over r' or 'n 
binomial r').  The number of possible arrangements of a sub-set of r items drawn from a 
set of n items is perm(n,r); for example, if n = 3 and  r = 2, there are perm(3,2) = 6 
possible arrangements (ab, ac, ba, bc, ca and cb). 

 

The formulae are: 

perm(n,r) = n! / (n-r)!      

comb(n,r) = perm(n,r) / r! 
 

Body mass index (BMI) 
 
Calculation of the BMI requires entry of the individual’s weight and height (in kilograms 
and centimetres, or in pounds and inches). 
 
The formulae are 
 
 BMI = Weight in kg / (height in cm / 100)

2  

 

 
BMI = kg / (cm / 100)

2  
or  lbs / inches

2
 x 703.06957964 

 
Commonly used BMI ranges are:  
   underweight: under 18.5,  

normal weight: 18.5 to 24.9 
overweight: 25 to 29.9 

            obese: 30 or more 
 
The BMI may overestimate body fat in athletes and others who have a muscular build, 
and  may underestimate body fat in older persons and others who have lost muscle. 
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P-VALUE 
 

This module displays  the probability (P, p-value) corresponding to a given value of z 

(the standard normal deviate), t, chi-square or F.   

 

It provides the one- and two-tailed P corresponding to absolute values of z and t, and one-

tailed P for values of chi-square and F. For the z and t distributions, the program provides 

three p-values: one-tailed (the computed value of P), two-tailed (obtained by doubling P, 

to a maximum of 1.0), and one-tailed (1 - P). The last value is of interest if the 

association shown by the data is opposite in direction to that specified in the alternative to 

the null hypothesis. 

 

The program also computes inverse probabilities, i.e.  the z, t, chi-square, or F value 

corresponding to a given p-value.  To obtain the Z or t value for a one-tailed P, the p-

value should be multiplied by two before it is entered. 

 

The program also provides the standard normal cumulative function corresponding to a 

value of z. 

 

The program can also calibrate a P value to compute the Bayesian minimum posterior 

probability of the null hypothesis. 

 

 

 
Minimum posterior probability of the null hypothesis (Bayes( 
 

A P value is "the probability, under the assumption of no effect (the null hypothesis), of 

obtaining a result equal to or more extreme than what was actually observed" (Held 

2010); i.e., it is the probability of obtaining a difference (or a trend, or a departure from 

zero, or a departure from homogeneity, etc., depending on what effect was tested) that is 

equal to or more extreme than what was actually observed. Bayesian statisticians claim 

that a P value may be misleading because of its misinterpretation as the probability of the 

null hypothesis being true (Hubbard and Bayarri 2003), and its consequent use as the 

basis for rejection or non-rejection of the null hypothesis. 

 

Instead, they suggest use of the minimum posterior probability of the null hypothesis, 

derived from the P value by use of a Bayes factor (Goodman 2001). This "calibration" of 

the P value requires entry of the probability (prior to the test) of the null hypothesis. The 

effect of varying the prior probability can be examined by repeating the procedure; this 

repetition is recommended in order to see the effect of the choice of a prior probability 

and to determine robustness or sensitivity to the choice of priors (Berger and Sellke 

1987). The higher the prior probability of the null hypothesis (i.e., the lower the prior 
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plausibility of an association), the higher will be the minimum posterior probability of the 

null hypothesis, and the less convincing will be the evidence for the association. 

 

Reliance on the P value usually exaggerates the evidence against the null hypothesis 

(Berger and Sellke 1987, Hubbard and Lindsay 2008).  Reliance on the minimum 

posterior probability of the null hypothesis rather than the P value provided by (for 

example) a statistical test comparing two proportions or rates may therefore be 

particularly helpful when (as is often the case) the minimum posterior probability exceeds 

the P value. If the minimum posterior  probability of the null hypothesis is large, the null 

hypothesis will not be rejected. However, a small minimum posterior probability does not 

necessarily mean that the actual posterior probability of the null hypothesis is small 

(Berger and Sellke 1987). 

 

The program computes the minimum posterior probability by the Sellke-Bayarri-Berger 

procedure (Sellke et al. 2001), which Held (2010), who provides a nomogram based on 

the procedure, calls "perhaps the simplest and most intuitive calibration". Its use is 

especially recommended if there is no explicit alternative to the null hypothesis (Sellke et 

al. 2001).  

 

The program displays the minimal Bayes factor – i.e. the minimal ratio (under certain 

conditions) of the posterior (data-based) odds of the null hypothesis to the prior odds.  

The lower its value, the stronger is the evidence against the null hypothesis.  The  

following guidelines (Jeffreys 1961) are often used: 

 <0.01: decisive support 

 0.032–0.010: very strong support 

 0.10–0.032: strong support 

0.32–0.10: substantial support 

1.00–0.32: not worth more than a bare mention 

>1.00:  less credible after than before the study 

 

METHODS 
 

The normal and t distribution functions respectively are derived from FORTRAN routines by Hill (1973) 

and Cooper (1968). The p-values coincide with standard table values closely, to within 0.00001 in general. 

 

The chi-square distribution function is based on formula 26.4.8 of Abramowitz and Stegum (1970).  If 

there is a single degree of freedom, the normal distribution function is employed.  If the degrees of freedom 

are greater than 60, the Wilson-Hilferty approximation is used (Abramowitz and Stegum 1970: formula 

26.4.17).  The p-values coincide with standard table values to within 0.0001 in general. 

 

The F distribution function is derived from FORTRAN routines by Cran et al. (1977) and Majumder and 

Bhattacharjee (1973), and employs a function (‘Algama’ - the logarithm of the gamma function) derived 

from a FORTRAN routine by Pike and Hill (1966).  The p-values coincide with standard table values to 
within 0.001 in general. 

 

The inverse F distribution formulae are derived from 26.5.22 and 26.6.15 of Abramowitz and Stegum 

(1970).  Since this inverse F distribution function is less accurate than the F distribution function, its 

accuracy is enhanced by adapting its results to those of the latter function.  After initial estimation of F 

from P, the corresponding p-value is back-estimated from F, and the F value is increased or decreased until 
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its corresponding P coincides with the entered p-value.  The F values coincide closely with tabulated 

values. If the numerator degrees of freedom = 1, an accurate F value is calculated from the t distribution by 

the formula        

F = (t[P/2,DF2])
2 

where  DF2 = denominator degrees of freedom (Diem 1970: 167). 

 

The inverse normal distribution function is derived from a FORTRAN routine by Odeh and Evans (1974).  

The Z values approximate standard table values very closely, to within 0.00001. 

 

The inverse t distribution formula is given in section 26.7.5 of Abramowitz and Stegum (1970).  The t 

values coincide with standard tables to two decimal places for degrees of freedom greater than 2 if P = .05 

or more, and for degrees of freedom greater than 7 if  P = 0.0001.  The precision is decreased with smaller 

p-values and increased with higher degrees of freedom.  If there are 7 or fewer degrees of freedom, the 
procedure displays exact  t values if P is 0.2, 0.1, 0.05, 0.02, 0.01, 0.002, or 0.00 based on a table obtained 

from http://www.zweigmedia.com/RealWorld/finitetopic1/t_table.html; (for intermediate P values, n 

approximate  interpolation is used. 

 

The inverse chi-square distribution formula is derived from a FORTRAN routine by Best and Roberts 

(1975) and employs a procedure to calculate the incomplete gamma integral as described by Bhattacharjee 

(1970).  The chi-square values generally coincide with the table values to three decimal places. 

 
The standard normal cumulative distribution functions use code published by                

Graeme West (2004) 

 

Minimum posterior probability of the null hypothesis 
 
The program uses the procedure suggested by Sellke et al. (2001), as summarized by Held (2010): 

 

BF = -2.718.P.ln(P) if P < 1 / 2.718; otherwise, BF = 1. 

MPP = 1 / {1 + 1 / [(BF - Q) / (1 – Q)]} 

 
where  P = P value 

   Q = prior probability of the null hypothesis 

          BF = minimum Bayes factor 
          MPP = minimum posterior probability of the null hypothesis 

 

http://www.zweigmedia.com/RealWorld/finitetopic1/t_table.html
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C.I. (CONFIDENCE INTERVALS) 

 

This module estimates confidence intervals for a variety of statistics: 

1) a proportion 

2) a risk, or a measure with a number-of-individuals denominator 

3) a rate with a person-time denominator. 

4) a risk ratio (ratio of measures with number-of-individuals denominators) 

5) a rate ratio (ratio of measures with person-time denominators) 

6) a difference between proportions (independent data) 

7) a difference between proportions (paired data) 

8) a difference between rates (with person-time denominators) 

9) an odds ratio (independent samples) 

10) an odds ratio (paired samples) 

11) a mean, standard deviation, or variance 

12) a Poisson variate 

13) a ratio of two Poisson variates 

14) a statistic whose C.I. can be estimated directly from its S.E. 

15) a statistic whose C.I. can be estimated from the S.E. of its log 

 

It can also compute an approximate confidence level for values in the ranges at or above, 

or at or below, any chosen point; this point might be (say) the lowest rate ratio that a 

study was designed to detect (hence providing a substitute for power calculations after a 

study's completion), or the highest rate ratio regarded as trivial. 

 

 
 

Confidence intervals 
 

In many instances exact 90%, 95%, and 99% Fisher’s and exact mid-P intervals are 

provided. Many statisticians recommend the use of exact mid-P intervals (Berry and 

Armitage 1995). 

 
1. Proportion 

 
In  most instances exact Fisher’s and mid-P confidence intervals are provided. If the 

denominator is over 30,000 or (if the numerator is zero) over 15,000, exact Fisher’s and 

approximate mid-P intervals are computed. In some instances only Fisher’s intervals are 

computed. 

 

If a numerator of 1 is entered, a second set of confidence intervals is computed, 

appropriate for use if this is the first success (e.g. detection of a case) after a series of  
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2. A risk, or a measure with a number-of individuals denominator 

 
This option is appropriate for a risk, prevalence, cumulative incidence, or any other 

measure with a number-of-individuals (not person-time) denominator. 

 

In  most instances exact Fisher’s and mid-P confidence intervals are provided. If the 

denominator is over 30,000 or (if the numerator is zero) over 15,000, exact Fisher’s and 

approximate mid-P intervals are computed. In some instances only Fisher’s intervals are 

computed. 

 

3. A rate with a person-time denominator 

 
Exact confidence intervals are displayed if there are 20 or fewer events, and approximate 

intervals of there are 20 or more events. Cohen and Yang (1994) point out that, unlike the 

conservative Fisher’s intervals, the narrower mid-P intervals do not guarantee the 

nominal confidence interval in all instances, but these authors suggest that the 

discrepancies are of little practical importance. 

 
4. A risk ratio (ratio of measures with number-of-individuals denominators) 
 

This option is appropriate for comparisons of risks, prevalences, cumulative incidences, 

or any other measures with number-of-individuals (not person-time) denominators. 

 

5. A rate ratio (ratio of measures with person-time denominators) 
 

Exact Fisher’s and mid-P confidence intervals are provided. 

 

6. A difference between proportions (independent data) 
 

This option is appropriate for comparisons of risks, per valences, cumulative incidences, 

or any other measures with number-of-individuals (not person-time) denominators 

derived from independent (unpaired) samples. 

 

Three sets of confidence intervals are computed. The first uses the traditional method, 

and is appropriate only if the samples are large. The other two (using the Wilson score  

 

7. A difference between proportions (paired data) 
 

This option is appropriate for comparisons of correlated proportions, i.e. comparisons 

based on paired data. 

 

Confidence intervals are computed by two methods  – the traditional large-sample 

procedure, and a procedure (based on Wilson’s score intervals) that is appropriate for 

small samples also, and is recommended by Newcombe and Altman (2000). 
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To compare the proportions of “Yes” in two matched samples, the pairs must be 

tabulated, and the numbers of “Yes-Yes”, “Yes-No”, “No-Yes”, and “No-No” mpairs 

must be entered. 

 

8. A difference between rates (with person-time denominators) 
 

The standard error of the difference and the confidence intervals are reported. 

 

9. An odds ratio (independent samples) 
 

Exact Fisher’s and mid-P confidence intervals are computed. 

 

Enter the numbers of “Yes” and “No” observations in each sample: for a comparison of 

cases and controls, enter the numbers who are exposed and unexposed to the factor under 

study; in a study in  which exposed and unexposed samples are compared, enter the 

numbers with and without the outcome condition. 

 

10. An odds ratio based on paired samples 
 

Appropriate for an odds ratio based on (for example) a matched case-control study. 

 

Exact Fisher’s and mid-P confidence intervals are computed. 

 

Enter the numbers of pairs with discrepant findings, e.g. (in a case-control study) the 

numbers of “case exposed, control not exposed” and “case not exposed, control exposed” 

pairs. 

 

11. A mean, standard deviation, or variance 
 

Confidence intervals are computed for the mean, standard deviation, and variance of a 

distribution if the mean and sample size are entered, together with either the standard 

deviation or the standard error of the mean. 

 

To obtain confidence intervals for a mean only, it is sufficient to enter it with its standard 

error. 

 

To obtain confidence intervals for a variance only, only the variance and sample size are 

required. 

 

12. A Poisson variate 

 
Appropriate for occurrences assumed to follow a Poisson distribution, e.g. the number of 

new cases of a rare disease in a population. 

 

Enter the number of “randomly occurring” events. 
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13. A ratio of two Poisson variates 
 

Appropriate for a ratio of two numbers of occurrences that are assumed to follow a 

Poisson distribution. 

 

14. A statistic whose C.I. can be estimated directly from its S.E. 
 

Appropriate if an approximately normal distribution can be assumed. 

 

15. A statistic whose C.I. can be estimated directly from the S.E. of its log 
 
Appropriate if an approximately lognormal distribution can be assumed. 

 

Confidence levels for values above/below a specific point 
 

The program computes an approximate confidence level for measurements at or below, 

or at or above, a chosen specific point. The selected point is included in both ranges – at 

or above” and “at or below” – since the distribution is assumed to be continuous (Zar 

1998: 74).The results are not probabilities Goodman 1994). 

 

If the selected point is the measure (e.g. the odds, rate or risk ratio or difference) that a 

study was designed to detect (often referred to as “delta”), this procedure may be a useful 

substitute for power calculations after a study has been performed (Smith and Bates 1992, 

1994), since retrospective power calculations have a questionable validity (Zumbo and 

Hubley 1998). 

 

The selected point might also be the highest value of an odds, rate or risk ratio or 

difference, or other measure, that is regarded as trivial – a value referred to as “zeta” by 

Feinstein (1998) or any other value. 

 

The computation assumes a normal distribution (e.g. for a difference between rates) or a 

lognormal distribution (e.g. for an odds, rate or risk ratio).  It is prudent to regard the 

results as approximations, both because of this assumption and because the computation 

assumes that the confidence interval entered is symmetric around the point estimate and 

that its width is a  know multiple of the standard error.   

 

Enter a 90%, 95% or 99% confidence interval for the measure, or a point estimate and 

standard error. These values may be based on a single sample or on a set of strata or 

studies. Crude values or adjusted ones (controlling for suspected confounders) can be 

used. 

 

Click on “Normal” if the statistic is a risk difference or rate difference, and “Lognormal” 

if it an odds, risk or rate ratio.  The base of a rate (100, 100, etc, need not be entered. 
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METHODS 

 
Confidence intervals 
 

1,2. Proportions and rates with number-of-individual denominators 

 
Exact Fisher and mid-P binomial intervals are computed by a procedure from XLIM (version SP2.5) by A. 

Ray Simons. 

 

If the denominator is over 30,000 or (if the numerator is zero) over 15,000, Fisher’s intervals are estimated 
by a method based on a relationship between the F and binomial distributions (Brownlee 1965). This 

provides estimates that are close enough to be regarded as exact. Zar’s formulae 24.28 and 24.29 are used 

(Zar 1998: 526). 

 

If the denominator is over 30,000 or (if the numerator is zero) over 15,000, approximate mid-P intervals are 

computed by Vollset’s formulae (Vollset 1993). The formulae for proportion x/N are: 

 Lower limit for x = (LF[x] + LF[x + 1]) / 2 

 Upper limit for x = (UF[x] + UF[x+ 1]) / 2 
where LF and UF are the lower and upper Fisher’s limits.  

Vollset found that this method, “proposed to provide an easily computed alternative to the mid-P interval, 

has a level of conservativeness in between the mid-P and uncorrected score method.” For large 

denominators the intervals are almost equal to the true mid-P values. 

 
For Vollset’s procedure, LF[x] and UF[x] are computed by Zar’s formulae 24.28 and 24.29 (Zar 1998: 

526), and LF[x + 1] and UF[x + 1] either by Zar’s formulae or by Pratt’s approximation to the exact method 

(Blyth 1986). The Pratt method is suggested by Vollset, who refers to these approximate mid-P intervals as 

“mean Pratt” intervals. The program uses Zar’s formulae for proportions with a numerator less than 50, 

rates with a base of 10 or 100 and a numerator less than 50, rates with a base of 1,000 and a numerator less 

than 100, rates with a base of 10,000 and a numerator less than 500, and rates with a base of 10,000 or 

more and a numerator less than 700. Pratt’s faster method is used in other instances, when it provides 

identical results to Zar’s method, at the level of precision with which the program displays results. 

 

The confidence intervals that are appropriate for the first success after a series of failures are based on a 

geometric distribution, using formula 1 of George and Elston (1993). 

 
3. Rates with person-time denominators 

 

Confidence intervals are computed for the numerator, assuming that it has a Poisson distribution. 

Exact Fisher’s and mid-P confidence intervals are displayed if there are 40  or fewer (for Fisher’s) or 20 or 

fewer (for mid-P) events, using tabulated values from Pearson and Hartley (1966) and Cohen and Yang 

(1994), for Fisher’s and mid-P intervals respectively.  In other instances. Approximate Fisher’s and mid-P 

confidence intervals are computed, using formulae provided by Rothman and Boice (1982, o. 29; formulae 

17 and 18). 

 

4. Risk ratios (ratios of measures with number-of-individuals denominators) 

 
Estimated confidence intervals are computed by the method described by Morris and Gardner (2000: p. 58), 

using a log transformation. 

 

5. Rate ratios (ratios of measures with person-time denominators) 

 

Exact confidence intervals are calculated by treating the ratio of the numerator of one rate to the sum of the 

numerators of both rates as a binomial parameter P, and determining its confidence intervals by the 

methods described above for proportions. To estimate a confidence interval for the ratio of rate R1 to rate  
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R2, the upper and lower confidence limits of P are then substituted for P in the formula 

 (P.D2) / [(1 – P).D1] 
 

6. Differences between proportions (independent data) 

 

Fleiss’s large-sample procedure uses formula 2.14 of Fleiss (1981). It is based on the normal distribution. 

The Wilson score procedures (Wilson 1927) are described by Newcombe (1998a) as methods 10 (without 

continuity correction) and 11 (with continuity correction). Formulae provided by Newcombe and Altman 

(2000: pp 49-50) are used for method 10. For method 11, the program computes the upper and lower 

confidence limits for the two proportions by formulae 1.26 and 1.27 of Fleiss (1981: p. 14), and substitutes 

them for L1, L2, U1, and  U2 in Newcombe’s formulae for L and U (Newcombe 1998a). The computation 

of Fleiss’s intervals is based on z (the standard normal deviate). 

 
7. Differences between proportions (paired data) 

 

The large-sample method is described by Fleiss (1981, formulae 8.14 and 8.15, p. 117). The method based 

on Wilson’s score intervals is described by Newcombe and Altman (2000, pp 52-54). The two methods are 

described by Newcombe (1998b) as Methods 2 and 10. 

 

8. Differences between rates (with person-time denominators) 

 

Approximate confidence intervals are calculated by the formulae provided by Rothman and Greenland 

(1998. p. 239). 

 
9. Odds ratios (independent samples) 

 

Exact Fisher’s and mid-P intervals are computed by an efficient algorithm for calculating the coefficients of 

the conditional distribution (Martin and Austin 1991), using code from David O. Martin’s public-domain 

EXACTBB program. 

The logit method is described by Morris and Gardner (2000, pp. 60-62). 

 

10. Odds ratios based on paired samples 

 

The numbers of pairs with discrepant findings, a and b, are treated as Poisson variates. Intervals for their 

ratio are estimated by regarding a / (a + b) as a binomial parameter (Ederer and Mantel 1974; Armitage and 

Berry 2002: p. 157) and computing its confidence intervals. If a + b does not exceed 50, exact mid-P and 
Fisher’s intervals are computed for this proportion; otherwise Zar’s formulae 24.28 and 24.29 are used (Zar 

1998: p. 526), substituting a for X (the numerator of the proportion) and a + b for N (the denominator). The 

required confidence limits are L1 / (1 – L1) and L2 / (1 – L2), where L1 and L2 are the confidence limits of 

a / (a + b). 

 

11. Means, standard deviations, variances 

 

The confidence interval for a mean is computed by adding or subtracting t.SE, where t is the upper 

(alpha/2)th quantile of the t distribution with N-1 degrees of freedom. If the sample size (N) is not entered 

but the standard error of the mean is, the normal distribution is used. 

 
The estimation of confidence intervals for the standard deviation SD and the variance SD2  of a distribution 

is described by Zar (1998, pp 110-111). 

The confidence limits for the variance are A/X1 and A/X2, and those for the standard deviation are the 

square roots of  A/X1 and A/X2, where 

 A = √SD(N – 1) 

X1, X2 = the chi-square values, at N – 1 degrees of freedom, corresponding to respective 

probabilities of 0.95 and 0.05 for the 90% interval, 0.975 and 0.025 for the 95% interval, and 

0.995 and 0.005 for the 99% interval. 
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12. Poisson variates 

 

Exact Fisher’s and mid-P confidence intervals are displayed if there are 20 or fewer events, using tabulated 

values from Pearson and Hartley (1966) and Cohen and Yang (1994), for Fisher’s and mid-P intervals 

respectively. 

Approximate Fisher’s and mid-P intervals are computed if there are more than 20 events, using formulae 
provided by Rothman and Boice (1982, p. 29, formulae 17 and 18). 

 

13. Ratios of Poisson variates 

Intervals for the ratio of Poisson variates, a: b, are estimated by regarding a  / (a + b) as a binomial 

parameter (Ederer and Mantel 1974, Armitage and Berry 2002, p. 157) and computing its confidence 

intervals. If a + b does not exceed 50, exact Fisher’s and mid-P intervals are computed for this proportion; 

otherwise Zar’s formulae 24.28 and 24.29 are used (Zar 1998, p. 526), substituting a for X (the numerator 

of the proportion) and a + b for N (the denominator). The required confidence limits are L1 /(1 – L1) and  

L2/(1 – L2). Where L1 and L2 are the confidence limits of a/(a + b). 

14. Statistic whose C.I. can be calculated from its S.E. 

Confidence intervals are estimated by adding or subtracting z.SE to the statistic, where z is the standard 

normal deviate representing the upper (alpha/2)th quantile of the normal distribution. For a 95% interval 
(alpha = 0.05), for example, z = 1.96. 

15. Statistic whose C.I. can be calculated from the S.E. of its log. 

Confidence intervals are estimated by adding or subtracting z.SE to the log of the statistic, where z is the 

standard normal deviate representing the upper (alpha/2)th quantile of the normal distribution and SE is the 

standard error of the log of the statistic; and then taking antilogs. For a 95% interval (alpha = 0.05), for 

example, z = 1.96. 

Confidence level for values above/below a specific point 

The procedure is described by Smith and Bates (1992). The confidence level is the one-tailed P value 

associated with the standard normal deviate (z) calculated by subtracting the point estimate from the 

selected point, and dividing this difference by the standard error. If a confidence interval is entered, its mid-

point (on a normal or lognormal scale, as appropriate) is used as the point estimate for this purpose; the 
standard error is derived from the confidence interval – the width of a 95% interval, for example, is taken to 

be (2 x 1.96) times the standard error. 
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TIMESPAN 
 

This module calculates the elapsed time between two calendar dates. It may be used for 

computing ages, exposure periods, follow-up periods, survival periods, gestational ages, 

etc.  Leap years and the variable number of days per month are taken into account.. 

 

“From” and “To” dates must be entered. “Today” can replace either date. If only the year 

is entered, the date allocated by the program is July 1
st. 

 If only the year and month are 

entered, the 15
th
 day of the month is allocated. Use a “minus” sign for a B.C. date. 

 

The module can also calculate the dates at a specified  number of months, weeks, or days 

before and after a given date(entered as the “From” date). 

 

Julian day numbers are displayed. These are serial numbers given to daya, starting with 

Jan 1
st
, 4713 B.C. Their computation takes account of changes made in the calendar 

system. 

 

The module may also be used to determine the day of the week on a given date, by 

entering a “From” date and “0” in the “Compute period of” box. 
 

 

 

 

 

METHOD 
 
The program determines the difference between the Julian Day numbers (Press et al. 1989, p. 11) of the two 

dates. 

 

Intervals expressed in years and months are rounded off downwards to two decimal places and one decimal 

place respectively; the mean lengths of a year and month are taken as 365.25 and 30.4375 days 

respectively. The interval in weeks is the interval in days, divided by 7 and rounded off downwards to one 

decimal place. 

 

 

 

______________________________________________________________________________________ 
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