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What DESCRIBE does 

 
 

DESCRIBE  is a WINPEPI program (Abramson 2004, 2011), part of the PEPI suite of computer 

programs for epidemiologists.  (“PEPI” is an acronym for “Programs for EPIdemiologists”.) 

 

DESCRIBE provides procedures for use in descriptive epidemiology, including the appraisal 

of separate samples in comparative studies.   It can handle categorical data (dichotomous, 

nominal or ordinal) and numerical data (including survival times).  It provides a capture-recapture 

procedure, appraises screening and diagnostic tests, and can compute sample sizes.  There are 21 

modules to choose from. 
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HOW TO USE WINPEPI: an ABC 
 
A. Obtain the latest version 
 
The latest set of WINPEPI programs and manuals can be downloaded free from www.brixtonhealth.com.   

 

 

B. Install 
 

Run winpepisetup.exe. This will put the programs and manuals in a folder of your choice  (replacing any previous 

versions in that folder) and will place a WINPEPI portal (a “WINPEPI” icon) on your desktop. It may be convenient to 

pin the Portal to the Start menu or the Taskbar. 

 

If you downloaded winpepifiles.zip, you will have to copy its contents to a folder of your choice, and manually put a 

shortcut to winpepi.exe on your desktop.  
 

C. Use the WINPEPI Portal and find the procedure you want 

There are seven WINPEPI  programs:  DESCRIBE (for descriptive epidemiology) COMPARE2  (to compare two 
independent groups or samples),  PAIRSetc (fo compare matched observations). LOGISTIC and POISSON (for 

multiple logistic and Poisson regression),  WHATIS (various utilities, including a calculator), and ETCETERA 

(miscellaneous procedures). Each program has a number of modules (over 120 in all), each of which offers a number 

of statistical procedures. 

Open the WINPEPI Portal, which provides access to all the programs and manuals, and to WINPEPI’s Finder, which 

is an alphabetical index  to the statistical procedures. The Portal also provides access  to a published overview of the 

programs and their learning or teaching potential, and to the web-site offering the latest version of WINPEPI.  Among 

other options, it provides a magnifying glass, for users with poor vision or small monitors. The Finder can also be 

accessed (in any WINPEPI program) by pressing F9 or clicking on “Winpepi”. 

If you know what program and module are required, open the program by clicking on it in the Portal. Otherwise, 

search the Finder  for the procedure you require.  The Finder will tell you what module to use. 

THE ESSENTIAL REQUIREMENT IS THAT YOU SHOULD KNOW WHAT YOU WANT.  

If you open the Finder and look for “Multiple linear regression”,  for example, you will be directed to ETCETERA  J, 

i.e. to module J of ETCETERA . You would then open ETCETERA and click on J. 

You may be offered alternatives. For an equivalence test for proportions, for example, the FINDER will say 

“COMPARE2 A,  PAIRSetc A”, i.e., either module A of COMPARE2 or module A of PAIRSetc. If the observations 

are independent, COMPARE2 is appropriate; if they are paired, PAIRSetc is appropriate. 

You may have to open the programs to find precisely what each module offers. For example, a search for “Diagnostic 

tests, accuracy of”, will direct you to  “DESCRIBE L1, L4, L5,  PAIRSetc D1, D2, D3”. When you open DESCRIBE, 

clicking on “L” will reveal that module L1 refers to “Yes/No” tests, and L4 and L5 to tests with a range of results. In 
PAIRSetc, modules D1, D2 and D3 (respectively) are appropriate for comparing normally-, log-normally-, or non-

normally-distributed results with a gold standard. 

 

It is unwise to use a statistical  procedure whose use one does not understand. This manual cannot supply  

this knowledge, and it is certainly no substitute for the basic understanding of statistics and  

epidemiological thinking that is essential for the wise choice of methods and the correct interpretation of  

their results.  
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D. Open the WINPEPI program and select a module  
 

Open the selected  program, via the Portal or by clicking on its icon or name  in Explorer. 

  

You will generally be presented with a menu, from which you should make a selection.  Additional options are  

offered in the horizontal menu at the top of the opening screen.  

  

A data-entry screen will then appear. You may be asked to make a further choice before entering the data, and  

various additional  options may be offered  At each stage, simple instructions are provided (in yellow); pop-up hints 

may be shown. Additional help may be obtained by pressing F1 or clicking on “Help” in the top menu. For fuller 
nformation, the program’s manual can be accessed by clicking on “Manual” in the top menu.  

 

 

E.  Enter the data   
  

Two of the programs can read data files. But in most instances, data must be entered manually at the keyboard, or 

pasted from a text file or spreadsheet. This usually requires prior counting and summarization, either manually or by  
using statistical software that processes primary data.  

  

Manual entry of data is usually easy. If entries are required in different boxes, pressing Enter or Tab after  
entering a number will generally take you to the next box; and pressing Escape will clear the entry. If several  

entries are required in the same box, press Enter or Space after each entry.  

  

Pasting data: If the data are available in a text file (created, for example, by Notepad or Microsoft Word) or a  
spreadsheet, they can be copied to the Windows clipboard [usually by pressing Ctrl-Insert or Ctrl-C], and then  

pasted into a data-entry box [usually by pressing Shift-Insert or Ctrl-V].  This can simplify data entry in boxes  

that require a number of entries (in rows or columns).  [Also, data can be copied from a data-entry box and  

pasted to a text file for future re-use; first, press Ctrl-A to mark it for copying.]  The following instructions can  

be accessed by pressing F2 (in any WINPEPI program) or clicking on “Help – Pasting”.  

  

 Precautions:  

•  The data must be pasted into the box as a single block, and not piecemeal.  
•  There must be no missing values (e.g., empty cells in a spreadsheet).  

•  The data must be in the format required in the box, with spaces between the numbers; exact alignment  

   of the   columns is not necessary.  For example      45 66  1  

                                                                                    20   3  132  

                                                                                    53   11  44  

•  If a defined number of rows is required, this number should be entered first, e.g. in the “Number of  

   categories” box.  

•  If a column of row numbers is shown on the left (1, 2, etc.), ensure that the”1” is visible before pasting.  

•  The cursor must be in the top left corner of the box when the “paste” keys are pressed.  

  

  

F. Run the program  
 
G. Select the results you need  
  
Do not be confused by the multiplicity of results. You can scroll down until you find the results you need; and   

ignore everything else. If you want an odds ratio and its confidence intervals, you can ignore all other results.  

  

  
WINPEPI programs offer more options than most users will ever need, and will usually display 

more results than are needed. IGNORE THE OPTIONS AND RESULTS YOU DON'T 

REQUIRE.  
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On the other hand, you may find some of the other results helpful.  

  

Very often, the program will  provide alternative tests and measures of effect, often with confidence intervals  

estimated by alternative methods. If there is disagreement between the results, you may find appropriate advice  

in the manual, which describes the procedures and their uses and limitations, with literature references..  
   

  

H. (Maybe) continue the analysis  
  

After getting the first results, it may be decided to continue the analysis. It may, for example, be decided to  

repeat the analysis (by clicking on “Repeat”) and make changes in the data or the options.  After performance of  

a logistic regression analysis, options are offered for the use of the logistic coefficients to compute a probability,  
risk ratio, etc.  

  

If stratified data are entered, clicking on “Next stratum” permits entry of another stratum, and clicking on “All  

strata” provides a combined analysis of all the strata. Similarly, a meta-analysis can be performed by entering a  

table for each study as a separate stratum, and then pressing “All strata”.  (If summary data (e.g. risk ratios) are  

available for each study, a series of tables is not needed; module I of COMPARE2 might then be used.)  

  

  

I. Saving the results  
  

By default, all results (except graphs) are automatically saved in pepi.txt in the Winpepi folder, with a warning  

if its size exceeds 500K. This file can be accessed via the Portal. The default procedure can be viewed or  

changed by clicking on “Saving” in the top menu; this also provides access to pepi.txt. Optionally, graphs can  

be saved as  BMP files.  

  

Results produced during the current session are also saved (temporarily) in pepi.tmp, which can be viewed by  

clicking on “View” in the top menu.  

  
The results of a single analysis can be saved (in a new file) by clicking on “Print or save” or “Print”.  

 

 

J. Adding comments  
  

Optionally. click on “Note” (in the top menu) to add a note to the previously-shown results,  for saving with the results 

in pepi.txt.  
 

   

  

K. Printing the results  
  

The results of an analysis can be printed by clicking on  “Print or save” or “Print”.  Graphs can be printed at low  
or high resolution. Also, selected results can be printed from  

  

  

L. Pasting the results to a text file  
  

All results shown on the screen are automatically copied to the Windows clipboard, from which they can be  

pasted into a Microsoft Word or other text file (preferably for display in a Courier or similar font, to ensure  
proper alignment of tabulated results). Optionally, graphs can be copied to the clipboard, replacing any  results.  

that are there. 
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Notes  
  

The programs are 32-bit applications, written with Delphi 5, and will run in any version of Microsoft Windows  

(including Windows 7), except Windows 3.  They can be run from a portable device such as a USB flash drive.  

  

The manuals that accompany the programs  require a PDF reader, such as Adobe Acrobat or Foxit Reader.  

  

The programs and manuals refer to dichotomous variables as “Yes-No” variables, and to interval- or ratio-scale  

variables as  “numerical”.   

  

P-values derived from z and t functions are generally correct to five decimal places, those based on chi-square,  

to four decimal places, and those based on the F function to three decimal places.  
  

WINPEPI does not adhere strictly to the conventional definitions of “risk” (ratios with  count denominators.  

e.g. prevalence) and “rate” (ratios with person-time denominators, e.g incidence density), except when the  

distinction is important.  Risks may be referred to as rates when this is unlikely to cause confusion.  

 

 

  

A DO-IT-YOURSELF THREESOME 
  
1.  PLANNING A STUDY: “Research Methods in  Community Medicine: Surveys, Epidemiological Research,  

Programme Evaluation, Clinical Trials” (J.H. Abramson and Z.H. Abramson), sixth edition, 2008. John Wiley  

& Sons.  

  

2.  ANALYSING THE FINDINGS: The WinPepi suite of computer programs for epidemiologists, with their  

manuals. Can be downloaded free from  www.brixtonhealth.com  

  

3.  INTERPRETING THE RESULTS: “Making Sense of Data: A Self-Instruction Manual on the  

Interpretation of Epidemiological Data” (J.H. Abramson and Z.H.Abramson), third edition, 2001. Oxford:  

Oxford University Press.  
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DESCRIBE’s MODULES : A GUIDE 
 

Modules A to D appraise single variables in single groups  or samples. 

 
 Module A appraises rates and  proportions (for “Yes-No” [dichotomous] variables). 

 Module B appraises a set of rates or proportions or ratios of counts. 

 Module C appraises nominal –scale  or ordinal- scale variables (with 3 or more categories). 

 Module D appraises numerical (interval-scale or ratio-scale) variables, or a sequence of numbers. 

 

Effect of misclassification   ModuleA 

Probit analysis Module B 

 

See “FINDING WHAT YOU WANT” (on previous page) 

 
If you wish to appraise findings, select an option between A and F in the main menu.   
 

 To appraise a rate or a proportion, select module A. 

 To appraise a sequence of rates or proportions or ratios of counts, select module B. 

 To appraise a frequency distribution with three or more categories (nominal or ordinal), select module C. 

 To appraise numerical data (normally distributed or not), select module D.  The numbers may or may not fall 
into a specific sequence. The numbers can represent a sequence of nominal categories. 

 To appraise seasonal variation (using monthly, weekly, or daily data), select module E. 

 To appraise survival data (time-to-event data), select module F. 

 To appraise a screening or diagnostic test, select module L. 

 
To standardize the findings, select module G (direct standardization) or H (indirect standardization, SMR). 
 
To estimate the number of cases in a population, using incomplete overlapping lists of cases (capture-recapture method), select 
module I in the main menu. 
 
To estimate prevalence from observations in cluster, stratified, or pooled samples, select module J in the main menu. 
 
To estimate the sample size required to estimate a prevalence, proportion, or mean, or to find a given number of cases, select module 
K in the main menu. 
 
To plot an epidemic curve, select module M. 
 

Easy entry of data: 
 

 If entries are required in different boxes, pressing Enter or Tab after entering a number will generally 

take you to the next box; pressing Escape will clear the entry.  

 If several entries are required in the same box, press Enter or Space after each entry. 

 Optionally, data can be “pasted” into entry boxes (see next page). 
 

Recalling results: 
 

Click on “View” in the top menu to display the current session’s previous results 
 

Pasting results: 
 

Results shown on the screen are automatically copied to the Windows clipboard, from which they can be pasted into a 

Microsoft Word or other text file at the site of the cursor (usually by  pressing Shift-Insert or Ctrl-V. To ensure proper 

alignment of tabulated results, a Courier or similar font should be used in the text file. If  the current session's previous 

results are recalled (by clicking on "View"), text can be marked (drag  the mouse over it with button pressed) and 

copied to the clipboard (by pressing Ctrl-Insert or Ctrl-C) for pasting elsewhere. 
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Adding comments: 
 

Click on  "Note" in the top menu if you wish to add explanatory comments to be placed in the clipboard, saved, or 

printed with the results. 

 
Saving results: 
 

By default, all results of Pepi-for-Windows programs are saved in PEPI.TXT in the Winpepi folder, with a warning if it 

exceeds 500K.  Results also go to PEPI.TMP (for display in the ”View” option); this file may be overwritten unless it is 

renamed on quitting DESCRIBE.  Click on “Saving” (in the top menu) to see the default procedure or to change it. 

Also, currently-shown results can be saved by clicking on "Print or save". [Results saved in earlier installations may be 

found in C:\PEPI.TXT].  TXT files can be combined with JOINTEXT, supplied with the Winpepi package. 

 

Printing results: 
 

Click on "Print".  If this fails, try switching the printer off and on again, and click on "Print" again. A simple solution is 

to  paste the currently-shown results (which have automatically been copied to the Windows clipboard) into a 

Microsoft Word or other text file, and print from there. To ensure proper alignment of tabulated results, a Courier or 

similar font should be used in the text file. Results can also be printed from one of the files in which they are 

automatically saved, e.g. PEPI.TXT (which can be accessed by clicking on "Results" in the Winpepi portal). 
Note: the “Print” option ejects full pages only. 

 

If you get an “Error opening window” message, close and re-open DESCRIBE. 

 

 

PASTING DATA 
 
If the data are available in a text file (e.g. a TXT file created by Notepad), they can be copied to the Windows clipboard 

[usually by pressing Ctrl-Insert or Ctrl-C], and then “pasted” into a data-entry box [usually by pressing Shift-Insert or 

Ctrl-V].  This can simplify data entry in boxes that require a number of entries (in rows or columns).  [Also, data can be 

copied from a data-entry box and pasted to a text file for future re-use; press Ctrl-A to mark it for copying.] 

 

Precautions: 
 

 The data must be pasted into the box as a single block, and not piecemeal. 

 The data must be in the format required in the box, with spaces between the numbers; exact 

alignment of the  

               columns is not necessary.  For example 45 66  1 
                                                                                 20   3  132 

                                                                                 53   11  44 

 If a defined number of rows is required, this number must be entered first, e.g. in the “Number of 

strata” or “Number of categories” box. 

 If row numbers are shown on the left (1, 2, etc.), ensure that the”1” is visible before pasting. 

 The cursor must be in the top left corner of the box when the “paste” keys are pressed. 
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HOW TO OBTAIN PEPI PROGRAMS 

 
 

All WINPEPI (PEPI-for-Windows) can be downloaded free.  The latest versions of WINPEPI programs – currently 

COMPARE2, DESCRIBE, ETCETERA, LOGISTIC, PAIRSetc, POISSON, and WHATIS – can be downloaded from 
www.brixtonhealth.com.  Version 4 of PEPI, which contains over 40 DOS-based programs (which can be used in 

Windows), can be downloaded from www.simtel.net/pub/pd/54632.html 

 

All the programs are distributed with PDF manuals.  

 

WINPEPI programs are provided with no liability to users and without any warranties, whether expressed or 

implied.  They are copyrighted, but may be freely copied and distributed for personal use; they may not be 

exploited commercially without permission.   

 

 

Wilko C Emmens's XYgraph unit (version 2.2) creates the graphs displayed by this program. 



                                                    A.  RATE OR PROPORTION 

10 

 

 

 

A.  APPRAISAL OF A RATE OR PROPORTION 
 

This module provides confidence intervals for a rate or proportion, and can also test for goodness 

of fit with an expected value, appraise the effect of misclassification, and (for randomly recurrent 

events) estimate the individual's chances of occurrence.  

 

If the observations are based on a sample of a population of known size, this size can be entered.  

The program then applies a finite population correction, and estimates confidence intervals for 

the number of cases (individuals with the attribute under study) in the population. 

 

Confidence intervals applicable to inverse sampling are also reported.  These are appropriate if the 

sample size was not decided in advance, but randomly-selected subjects were investigated until a 

predetermined number of cases were identified.  The program can estimate the confidence intervals 

of the prevalence when the first case is identified in a case-finding program. 

 

Two basic entries are required - a numerator (e.g. the number of persons with a given attribute, the 

number of cases of a disease, or the number of deaths or other events) or a proportion or rate; and a 

denominator - a count denominator (number of individuals) or number of person-time units 

(usually person-years).  If inverse sampling is used, the denominator is the number of cases plus the 

number of "failures".  If a rate is entered, the program may adjust it to ensure that the numerator is 

a whole number. 

 

In addition, the total population size may be entered if the observations are based on a sample; this 

is unnecessary if the sampling fraction is less than 5% and confidence intervals for the number of 

cases are not required. 

 

Additional entries are needed if a test for goodness of fit is required., or if the effect of 

misclassification is to be appraised (see below). 

 

 

Confidence intervals for the prevalence 
 

For a proportion or a rate with a count denominator, exact Fisher's and mid-P confidence intervals 

are generally computed.  If the denominator is very large, approximations to the exact intervals are 

displayed; the approximation to the Fisher interval is close enough to be regarded as exact.  For a 

rate with a person-time denominator, exact Fisher's and mid-P confidence intervals are displayed if 

the number of events is 402 or less, and approximate intervals if it is higher.   

 

Confidence intervals based on Wilson's score-test (Wilson 1927) are also computed if there is a 

count denominator.  These are arguably preferable to the exact intervals in terms of closeness to the 

required confidence levels (Agresti and Coull 1998).  Newcombe and Altman (2000: 46) 

recommend use of Wilson’s score intervals rather than Fisher's exact method, which is unduly 

conservative, adding that, especially if the proportion is very close to 0 or 1, it is reasonable to use 

the mid-P exact method, although it too is somewhat more conservative than the score method. 

 

If there is a count denominator, confidence intervals  are also estimated by three other methods:  

The method described by Fleiss et al. (2003: 28-29), which is claimed to be preferable to other 

approximate methods when the proportion is very close to 0 or 1; the SAIFS (single augmentation 
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with an imaginary failure or success) method described by Borkowf (2006), which provides 

intervals that are claimed to have near nominal coverage; and a less satisfactory method using 

Wald’s statistic. 

 

Confidence intervals are not computed if the total population was studied, i.e. if the size of the total 

population is entered and it coincides with the sample size. 

 

Finite population correction 
 
If the observations are based on a sample of a population of known size, and this size is entered, a 

finite population correction is applied.  This reduces the variance and hence makes confidence 

intervals narrower.  The correction is necessary only if the sampling fraction is more than 5% 

(Cochran 1977: 25) and sampling is done without replacement, as it usually is (that is, an individual 

cannot be selected more than once).  The correction has little effect unless the sampling fraction is 

large. 

 

Confidence intervals for the number of cases  
 
If the total population size is entered, confidence intervals are estimated for the number of cases 

(subjects with the attribute under study) in the population, by applying the Wilson confidence limits 

for the prevalence (with a finite population correction) to the population size.  The numbers are 

rounded off to the nearest integer. 

 

Inverse sampling 
 
The program provides confidence intervals for the prevalence that are applicable if  inverse 

sampling was used – that is, if randomly-selected subjects were investigated until a predetermined 

number of cases were identified.  The computation is based on the number of cases and the number 

of subjects investigated (the number of cases plus the number of "failures"). 

 
Three sets of intervals are provided – Fisher's exact intervals, which may be preferred if the 

denominator is small (Lui 2004: 9), and intervals based on Wald's statistic (which uses a biased 

estimate of the prevalence) and on Finney's estimator (which uses an unbiased estimate of the 

prevalence), both of which are derived from large-sample theory.  If the number of cases is large, 

the intervals provided by the three procedures are similar. 

 
The program can estimate the confidence intervals of the prevalence if the number of cases is 1; 

that is, when the first case is identified in a case-finding program. 

 

Goodness of fit 
 

To test goodness of fit with an expected rate or proportion, the expected value must be entered. 

 

If a count denominator is entered, goodness of fit is computed by an exact binomial test. This test is 

appropriate in a comparison of the numbers of observations in two alternative categories. If the 

numbers are 2 and 10, for example, 2 should be entered as the numerator and 12 as the 

denominator. The test compares the observed data with a theoretical expectation; if, for example,  

the expectation is a 1:1 ratio, an expected proportion of 0.5 should be entered.  The two-tailed P 

value will usually be appropriate, the null hypothesis is that the numbers do not differ from 
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expectation. In a one-tailed test, the null hypothesis is that the number in one category is not larger 

than expected. 
 

If a person-time denominator is entered, goodness of fit is tested by comparing the observed and 

(calculated) expected numbers of events, assuming a Poisson distribution.  This is appropriate if the 

event is rare.  Exact Fisher's and mid-P tests are performed if neither the observed nor the expected 

number of events exceeds 200, and a large-sample method in other instances.  A large-sample chi-

square goodness-of-fit test is also done. 

 

Appraisal of misclassification 
  
This module may be appropriate if the numerator represents the number of individuals with a given 

characteristic (e.g. the presence of a disease).   It requires entry of  the sensitivity and specificity of 

the measure of whatever is enumerated by the numerator; but if a person-time denominator is 

entered, a specificity of 100% (an absence of false positives) is assumed.  

 

The program computes the true rate or proportion that (given the above sensitivity and specificity 

values) would have given rise to the observed rate or proportion, assuming that the sample studied 

is a representative one.  If this calculated figure is under 0% or (when a count denominator is used) 

over 100%, the program displays a warning saying that the observed finding is incompatible with 

the sensitivity and specificity values entered, and that if the entries are correct, the findings may 

represent sampling error.  Confidence limits are estimated for the computed true rate, based on the 

confidence limits for the observed rate or proportion. These intervals make no allowance for 

uncertainty of the sensitivity and specificity values.  

 

If confidence intervals (say 90% or 95%) are available for sensitivity and specificity, it may be 

enlightening to compute a range for the estimated true rate.  To compute an upper bound for the 

true rate or proportion (when a count denominator is used), enter the lower confidence limit of 

sensitivity and the upper confidence limit of specificity; to compute a lower bound, enter the upper 

confidence limit of sensitivity and the lower confidence limit of specificity; if incompatibility is 

reported, take the lower bound for the true rate or proportion to be zero. 

 

Chances of occurrence 
 

If a person-time denominator is entered, the program computes an individual's chances of 1, 2, 3 or 

more events in a unit of time (in a year, if a person-year denominator is entered).  These estimates 

apply to randomly recurrent events that follow a Poisson distribution. 

 

 

METHODS 
Confidence intervals 

 

For a proportion or a rate with a count denominator, exact Fisher's and mid-P binomial confidence intervals are 

computed by a procedure from XLIM (version SP2.5) by A. Ray Simons.  If the denominator is over 30,000 (or, if the 

numerator is zero, over 15,000), Fisher's intervals are estimated by a method based on a relationship between the F and 

binomial distributions (Brownlee 1965); this provides estimates that are close enough to be regarded as exact. Zar's 

formulae 24.28 and 24.29 are used (Zar 1998, p. 524).  If the denominator is over 30,000 or (if the numerator is zero) 
over 15,000, approximate mid-P intervals are computed by Vollset's procedure (Vollset 1993); for details, see the Pepi 

manual (Abramson and Gahlinger 2001, p. 260). 
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Formulae for the computation of Wilson's confidence intervals, based on a inversion of the score test for a proportion, 

are provided by Newcombe and Altman (2000: 46-47).  If the numerator (number of cases) was not entered it is 

calculated from the proportion or rate, and rounded off to the nearest integer. 

 

The formula for the confidence intervals proposed by Fleiss et al. (2003: 28-29) uses their formulae 2.17 and 2.18.  If 

the proportion or rate is 0, the computed lower limit is changed to 0, and if the proportion is 1 (or the rate 100%) the 
computed upper limit is changed to 1 (or 100%). 

 

Borkowf’s “single augmentation with an imaginary failure or success (SAIFS)” confidence intervals are computed by 

formulae 8-11 of Borkowf (2006). 

 

The confidence intervals using Wald’s statistic are computed by formula 1.3 of Lui (2004), with the adjustments 

suggested by Lui: if the proportion P is 0 or 1, the variance is taken as Padj (1 - Padj) / n,; 

if   (P * n < 5) or [(1 -P) * n  < 5]  the program displays a warning: "Not recommended for these data"; 

and if the computed lower limit < 0 it is changed to 0, and if the computed upper limit > 1 it is changed to 1; 

where  P = X / n and Padj = (X + 0.5) / (n  + 1); 

 X = numerator and n = denominator; 

 

Confidence intervals for rates with person-time denominators are based on the assumption that the number of events 

has a Poisson distribution.  If there are 40 or fewer events, exact Fisher's intervals are displayed, using tabulated values 
from Pearson and Hartley (1966), and for 20 or fewer events, exact mid-P intervals are displayed, using tabulated 

values from Cohen and Yang (1994).  If there are more events, closely approximate intervals are computed by formulae 

17 and 18 of Rothman and Boice (1982: 29). 

 

Standard error 
 
The formula (Zar 1998: formula 24.20) is  

 √[p (1 – p) / (n – 1)]; but if n = 1,  √[p (1 – p) / n] is used, to avoid zero division. 

where p = proportion 

 n = count denominator 
 

Finite population correction  
 

If the total population size is entered, the finite population correction (fpc) factor for the variance is computed as: 

(N - n) / (N - 1) 
where  N = total population size and   n = size of sample.    

The standard error is multiplied by √fpc.  
 

The confidence intervals for the prevalence are corrected by multiplying the distance between each confidence limit 

and the point estimate by √fpc, using modified point estimates (Burstein 1975, Cochran 1977: 59) for this purpose: 

  (a - 0.5) / n for the lower limit, and 

   (a + a / n) / n for the upper limit 

where a = numerator 

 n = denominator 

 

Inverse sampling 
 

Confidence intervals appropriate for inverse sampling are provided by Lui (2004) – formula 1.20 for the exact 
intervals, formula 1.15 for the intervals based on Wald's statistic, and formula 1.19 for the formula based on Finney's 

estimator. The Wald and Finney methods are not used if the proportion is 0 or 1.  The computations are based only on 

the sample; the total population size (if entered) is ignored. 

 

If a single case has been found, the program uses the procedure suggested by George and Elston (1993), which is a 

special case of formula 1.20 (Lui 2004: 9).. 
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Goodness of fit 

 
The binomial test of goodness of fit  (Siegel and Castellani 1988: 38-42), which is performed when a count denominator 

is entered, uses the incomplete beta function to compute exact cumulative binomial functions (Press et al. 1989, pp 

188-190). The lower of the two one-tailed probabilities is displayed as the one-tailed P, and the mid-P value is their 

mean (unless the observed proportion is 0 or 1, in which case  the mid-P value is half the lower one-tailed P).  The two-

tailed P values displayed are conservative approximations, obtained by doubling the one-sided values. 

If a person-time denominator is entered, the formulae for Poisson-based goodness-of-fit tests are those provided by 

Rothman and Boice (1982: 29); iterative root-finding procedures are used.  The formula for the chi-square  
goodness-of-fit test, with 1 degree of freedom, is     

chi-sq. = (Obs - Exp)² / Exp 
where Obs and Exp are the observed and expected numbers of events (Vaeth 2000, Rothman and Greenland 1998,  

p.235).  Chi-square is also computed with a continuity correction (Zar 1998: formula 22.3): 
chi-sq. = (|Obs - Exp| - 0.5)² / Exp 

 
Appraisal of misclassification 
 

To appraise the effect of misclassification, the true rate or proportion is calculated by the formula (based on formula 

19-5 in Rothman and Greenland 1998): 

True proportion = [P - (1 - Sp)] / (Se + Sp - 1) 
where  P = observed proportion  

  Se = sensitivity, expressed as a proportion 

  Sp = specificity, expressed as a proportion.   

This formula is applied both to the observed rate or proportion and to its Wilson’s 95% confidence limits (if a count 

denominator was entered) or its Fisher’s 95% confidence limits (if a person-time denominator was entered). 

 

Chances of occurrence 
 
The computation of the individual's chances of  0, 1, 2, 3 or more events in a unit of time uses formula 3.18 of 

Armiotage et al. (2002: 72).  The rate per person-time unit is used as the Poisson mean. 
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B.  APPRAISAL OF A SEQUENCE OF RATES,PROPORTIONS 

OR OTHER RATIOS 
 

This module appraises a set of rates or proportions or ratios of two counts, or a sequence measured 

at successive points along a scale – usually along a time scale, but sometimes along some other 

dimension, e.g. the number of cigarettes smoked per day, or the severity of a disease (e.g. mild, 

moderate, severe).  

 

It provides a test for homogeneity of the rates, proportions, or ratios, multiple-comparison tests 

that compare the values with one another, and.tests for a trend and for departure from a linear 

trend.  Regression coefficients are computed, expressing the relationship between the values and 

their positions along the scale, using both the raw data and log-transformed data, as well as 

according to the Cochran-Armitage procedure, and the relative change per scale unit (e.g. the 

annual rate of increase or decrease) is reported.  Tests are performed for serial correlation of 

residuals – i.e., correlation between the deviations of consecutive rates or proportions from the 

regression line.  If the findings suggest the presence of positive serial correlation, the Cochrane-

Orcutt procedure is used to control its effects and provide corrected estimates of the regression 

coefficients and the relative change per scale unit.  The regression lines, including those based on 

the Cochrane-Orcutt procedure, are displayed in a graph, together with smoothed curves (based 

on kernel smoothing). Probit analysis is provided as an option, accompanied by a nonparametric 

counterpart (Spearman-Karber analysis).  

 

If a change-point test is required, or smoothed values for plotting a curve, or nonparametric 

regression coefficients (for rates or proportions measured at equal intervals along the scale), enter 

the sequence of rates or proportions in this program’s module D. 

 

Alternative methods of data entry are offered: entry of numerators (e.g. numbers of cases of a 

disease) and denominators, or entry of proportions and their denominators, or entry of rates and 

their denominators.  Either count denominators (numbers of individuals) or person-time 

denominators (e.g. person-years) may be entered.  By default, the points along the scale are given 

scores of 1, 2, 3 etc., which makes them equally spaced.  The scores can be changed if the points 

are not equally spaced; calendar years (1999, 2003, etc.) can be used as scores.  For a scale of 

smoking, the median numbers of  cigarettes smoked per day might be used as the scores for 

categories of smokers. 

 

Optionally, the module can be used only to compare the values, without reference to their sequence. 

 

 

Tests for trend 
 

Two almost equivalent tests for trend are provided: the Cochran-Armitage chi-square test (Cochran 

1954, Armitage 1955) and the Mantel trend test.   A significant result generally indicates a linear 

trend, but the trend is not always linear or monotonic.  Both the trend test and the accompanying 

test for departure from a linear trend may be significant.  The numbers of expected frequencies 

that are <2 and <5 are displayed, since the Cochran-Armitage test may be uncertain if many 

expected frequencies are <2, and the P value for the test for departure from a linear trend may be 

uncertain if many are <5 (Armitage et al. 2002: 505).  The Mantel test is valid even if the 
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numerators are only zeroes or ones, provided that at least two of the proportions or rates have large 

numerators and (for pure-count data) that, for at least two rates or proportions, there are a large 

number of individuals not included in the numerator (Rothman and Greenland 1998: 315).  Note 

that a trend appraisal of age-standardized rates may be misleading if not supplemented by 

appraisals of the trend of age-specific rates (Choi et al. 1999). 

 

In addition, Bartholomew’s test for trend (Bartholomew 1959a, 1959b) is done if three or four 

values are entered.  This test is recommended when the scale represents a qualitative gradient, so 

that only arbitrary scores can be allocated to points along the scale – for example in a study using 

“mild”, “moderate”, “serious”, and “extreme” as measures of severity (Fleiss et al. 2003).  Unlike 

the Cochran-Armitage and Mantel tests, this test does not use scores.  One-tailed and two-tailed P 

values are reported, as is the direction of the trend to which the one-tailed P applies.  The one-tailed 

tests are performed after “condensing” the series by calculating weighted averages of any adjacent 

values whose direction of change diverges from a monotonic upward or downwards tendency.  The 

test assumes that after this “condensing” process each denominator is large, no proportions are very 

close to 0 or 1, and no expected cell frequency is less than 5 (Bartholomew 1959a).  It can 

occasionally happen that the test indicates a significant trend in the opposite direction to the slope 

of the linear regression line.  The results must be regarded as approximate if person-time 

denominators were entered, since the analysis treats them as count denominators. 

 

Test for homogeneity 
] 
A simple chi-square test is used to compare the values. 

 

Multiple-comparison tests 
 

Multiple tests are performed, comparing each pair of values, unless there are over 100.  A 

Tukey-type (“honestly significant difference test”) multiple-comparison procedure is used. The 

results must be regarded as approximate if person-time denominators were entered, since the 

analysis treats them as count denominators; significance is probably overestimated.  

 

Regression coefficients 
 

The linear relationship between the rates or proportions and their scores (i.e., their positions along 

the scale) is summarized by regression equations based on both raw  and log-transformed values. 

Standard errors, 95% confidence intervals, and 1-tailed and 2-tailed P values are displayed for the 

slope coefficients.  Regression coefficients based on the Cochran-Amitage procedure are also 

computed. 

 

The regression lines are displayed in a graph (see below). 

 

If nonparametric regression coefficients are required, they can be obtained (for rates or 

proportions measured at equal intervals along the scale) by selecting this program’s module D. 

 

Relative change per scale unit  
 

The relative change per scale unit is computed.  If the score units are years, this is the annual rate of 

increase or decrease.   
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Serial correlation of residuals  
 

Two tests are performed for serial correlation of residuals, i.e., correlation between the deviations 

of consecutive rates or proportions from the regression line.  In a study of a time trend this may be 

caused by factors that have an effect persisting over successive periods, and that do not find their 

expression in the straight regression line; they may or may not be confounders of the association 

under study, such as fluctuations in diagnostic criteria.   

 

Serial correlation will produce an unduly narrow confidence interval for the slope coefficient, and 

its presence may throw doubt on the appropriateness of a straight regression line.   

 

The tests are the Durbin-Watson test, which assumes a normal distribution for the residuals, and a 

runs test, which makes no such assumption.  The Durbin-Watson D statistic is compared with the 

lower and upper bounds of its 5% critical level; if it is below the lower bound, this indicates 

positive serial correlation at the P < 0.05 level; if it is below only the upper bound, this is 

inconclusive; it indicates that there may  be positive serial correlation at the P < 0.05 level.  The 

runs test is based on the direction of the discrepancies; it compares the number of runs of 

uninterrupted sequences in the same direction (positive or negative) with the number expected in a 

random sequence. 

 

Two-tailed and one-tailed P values (testing for positive and negative correlation) are displayed, a 

low P value indicates serial correlation. 

 

Cochrane-Orcutt procedure 
 

If the findings suggest there may be positive serial correlation, the program uses the Cochrane-

Orcutt procedure (Cochrane and Orcutt 1949, Johnston and DiNardo 1997)  to control its effects 

and provide corrected estimates of the regression coefficients and the relative change per scale unit 

(e.g. the annual rate of increase or decrease). The procedure is applied to both the raw data and log-

transformed values.  The corrected estimates are displayed in a graph (see below). 

 

Smoothed curves 

Two alternative smoothed curves are provided., and displayed in a graph (see below).  They are 

based on kernel smoothing (see Rothman and Greenland 1998: 317-320), and are appropriate for 

rates with person-time denominators as well as for risks, proportions, and case-control and other 

ratios with number-of-individuals denominators.  

 

The principle of kernel smoothing is that each value is replaced by a weighted average of the values 

falling within a defined radius around it,  the weights being lowest for observations that are furthest 

from the centre of the ‘window’ defined by the radius.  Two sets of smoothed values are computed, 

one using weights based solely on distance from the centre of the window, and the second taking 

account of sample size as well, so as to decrease the influence of values based on smaller samples.  

The radius defined by the program is three times the median distance between observations along 

dimension X (the dimension along which the rates or other ratios – representing variable Y – are 

plotted), i.e., three times the distance between successive scores.  The first and last values in the 

series are not modified.   
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Probit analysis 
 
 Probit analysis may be used to analyse a series of proportions that bear a sigmoid (S-

shaped) relationship to a covariate (e.g. age or dosage). It uses probits that transform the sigmoid 

curve to a straight line, and estimates the value of the covariate that is associated with a given 

proportion.  This may be helpful in (for example) cross-sectional studies that aim to estimate the 

average age of occurrence of an event (e.g. menarche, menopause, or cessation of breastfeeding) 

from "yes-no" data collected from subjects of different ages. It is often used in studies that measure 

the proportions of subjects with a given effect after exposure to different amounts of a causal 

factor, e.g. a drug or toxin, or a stimulus that  produces a psychometric response. The program 

reports the amount of the causal factor (e.g. the dose) that produces the effect in half the exposed 

subjects - i.e., the median effective dose (ED50) or, if the response is death, the median lethal dose 

(LD50). It also reports the amount that produces the effect in 90% of subjects (ED90 or LD90). 

  

 The probit analysis is performed twice, first using the observed values of the covariate, and 

then using the logs of these values. These methods (respectively) assume a normal or log-normal 

distribution; dose-response studies generally use the log transformations of the dose. 

  

 If the lowest value of the covariate is zero, suggesting that the study is a dose-response or 

similar study with a control (i.e., a zero dose or stimulus), two additional probit analyses are 

performed, after reducing the proportions (for other values of the covariate) in order to allow for 

the control effect, so as to produce adjusted proportions that better express the net effect of the 

drug, toxin,  or stimulus under study.  Both  the untransformed values of the covariate, and their 

logs, are used.  These additional analyses are not performed if they present a computational 

difficulty. 

  

 For each analysis, the program reports the covariate values associated with proportions of 

0.5 and 0.9 (with their 95% confidence intervals), and performs a chi-squared heterogeneity test. If 

the test points to a poor fit with the probit model, the variance is increased before estimation of 

confidence intervals.  The test may be misleading if samples are small. 

  

 The two or four probit regression lines (with the probits back-converted to proportions) are 

displayed graphically, in different colours (see below). permitting visual comparison of their 

appropriateness. The results of any analysis with a poor fit to the model (as seen in the graph) 

should be ignored.  The nonparametric (Spearman-Karber) analysis may be an appropriate 

alternative. 

 

Spearman-Karber analysis 
 
If a series of proportions or rates bears a sigmoid (S-shaped) relationship to a covariate  (e.g. time, 

age,  or dosage), the Spearman-Karber analysis is a nonparametric method of estimating the 

threshold level (of the covariate) at which the proportion reaches 50%. Its use has been 

recommended in psychometric studies, for example, that measure the proportions of times that a 

certain response is given as a function of some property of a stimulus, as well as in dose-response 

studies of the effectiveness or toxicity of drugs, and other studies.  It may be used together with or 

instead of probit analysis, and is particularly useful if the data are not normally distributed (i.e., if a 

cumulative normal distribution cannot be assumed for the series of proportions), or if the fit with a 

probit model is poor (Miller and Ulrich 2001). 
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The program reports the median value of the covariate (the value corresponding to a proportion of 

50%, i.e. the 50th percentile of the proportions, or the median effective value), the mean value 

(unless it is very different from the median value), and the interquartile range (the values of the 

covariate ranging from the 25th to the 75th percentile). 

 

The procedure is described  by (inter alios) Church and Cobb (1973) and Miller and Ulrich (2001, 

2004). The mean value computed in this way  is often equivalent to a maximum-likelihood estimate 

(Church and Cobb 1973) 

 

 
Graphs 
 

A graph is displayed, showing the simple linear regression line (the regression of the rates or 

percentages on their scores – i.e., on their positions along the scale)  and also, if the findings 

suggest positive serial correlation, a corrected regression line (labelled “C-O”) based on the 

Cochrane-Orcutt procedure .  The regression lines are truncated at the edges of the graph.  The 

graph also displays a regression line based on the Cochran-Armitage procedure (not shown in the 

following diagram) and alternative smoothed curves: a green line based on weights that depend 

only on distance from the centre of the kernel, and a blue line based on weights that are also 

influenced by sample size. 

 

 
 

Optionally, this graph can be replaced by a similar one showing regression lines  based on the log-

transformed rates or proportions, to permit a visual appraisal of whether log-transformation 

produces a better fit.   

 

 
 

The expected values according to any of the regression equations, and the smoothed values, can be 

read by clicking on the graph.   Accuracy can be enhanced by "zooming" (but not for the graph 

showing log-transformed data) - any segment of a curve can be magnified by pressing Ctrl and 

clicking on the graph, and then drawing a rectangle to outline the required segment.  Each graph 

can be printed, copied to the clipboard for pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

If the probit analysis option is selected, the graph shows the two probit regression lines (with the 

probits back-converted to proportions) - a green line based on the analysis  using the observed 

values of the covariate, and a red line for the analysis using the logs of these values. The two lines 



                                                                                              B.  SEQUENCE OF RATES OR PROPORTIONS 

20 

 

may overlap, as in the following graph, which is based on a study of menarche (Ayatollahi et al. 

2002); this overlap indicates that either method of analysis is appropriate. 

 

 
 

The two probit regression lines are less similar in the following graph, which is based on 

information about the proportions of babies of different ages (in days) who were being breast-fed 

(Ferreira et al. 1996); each point along the scale represents a group of babies of similar age, 

characterised by their mean age. For these data, the red line represents a better fit than the green 

line.  

 

 
 

In the following graph, from a study of the toxicity of a certain root to certain beetles (Finney 1947, 

Table 17) there are four probit regression lines.  In addition to the green and red lines, there are 

blue and olive ones, representing the associations of control-corrected proportions with 

(respectively)  the observed values of the covariate and the logs of these values. The fit of the red 

line is clearly unsatisfactory, and the olive line represents a better fit than the blue line. 

 

 
 

 

METHODS 
 

If rates or proportions are entered as such – i.e. if numerators are not entered – the numerators are calculated and 

rounded off to the nearest integer.  Corrected rates or proportions (using the rounded-off numerators) are used in 

subsequent computations. 

 

The Mantel trend test and the Durbin-Watson test are not done if ratios other than proportions are entered. 

 

Tests for trend 

 
The Cochran-Armitage test for a linear trend (Altman 1991: 261-265 ) and the test for departure from a linear trend use 

formulae 24.90 and 24.91 of Zar (1998, p. 567).  If person-time denominators are entered, they are multiplied by 
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1,000,000, as suggested by Rothman and Boice (1982: 35).  If ratios other than rates or proportions are entered, they 

are converted to proportions (using the sum of the two entered counts as the denominator) before applying the test. 

 

The Mantel trend test uses the formula provided by Rothman (1986: 346).  If person-time denominators are entered  

the variance (in the denominator) is increased by changing the first term to  

∑(a i ) / {∑(N i) • [∑(N i) - 1]} 

 
Bartholomew’s test is described by Fleiss et al. (2003: 195-198), and in more detail by Bartholomew (1959a, 1959b).  

The chi-series of rates or proportions is “condensed” by calculating weighted averages of adjacent values whose 

direction of change diverges from a  monotonic trend.   This is done twice, once for an upward and once for a 

downward trend, and a square statistic is calculated each time by formula 9.32 of Fleiss et al.  A one-tailed P value is 

derived from the higher chi-square, and reported as <0.005, <0.01, <0.025, <0.05, <0.1, and >0.1, and doubled to 
provide a two-tailed value.  The one-tailed P values are read from Tables A.7 and A.8 of Fleiss et al., after calculating 

values for c1 and c2 (formulae 9.34 –9.36 of Fleiss et al.), and interpolating in both c1 and c2 if necessary. 

 
Multiple-comparison tests 
 

The Tukey-type multiple-testing procedure is described by Zar (1998: 563-564).  Formula 13.8 is used for the 

transformation.  If person-time denominators are entered,  rates exceeding 100% are changed to 100% for the purpose 
of these tests.  Results are appraised in relation to critical values of the Q distribution (Zar 1998: Tables B5, B6, B7), 

and reported as P < 0.001, < 0.01, < 0.05, or not significant. 

 

Regression coefficients  
 

The regression coefficients are based on ordinary least-squares regression analysis , using both the raw data, and 

(unless there are negative numbers in the series) log-transformed rates or proportions (natural logarithms).  If log-

transformation is applied, zero proportions are taken as 0.0001, and zero rates are taken as 0.1 per base  (e.g., per 

1000).  If  the regression analysis is based on the Cochran-Armitage procedure,he beta coefficient and itssatandard 

error are computed by formulae 5 and 6 of Armitage 1955, and the alpha coefficient by formula 17.7 of Zar (1998). 

 
Relative change per scale unit  
 

The slope coefficient (b) for the log-transformed data is used to compute the relative change per scale unit, using the 

following formula (after the Cochrane-Orcutt procedure [see below], b* is substituted for b ). 

100(exp(b) – 0.1). 
 

Serial correlation of residuals  
 

The Durbin-Watson test (Durbin and Watson, 1951) for serial correlation is based on the magnitude of the  

discrepancies between the observed values and the values computed from the regression equation. The formula is 

D = ∑[(ei – ei-1)²] / ∑[(ei)²], 
where ei  = the discrepancy for a specific value (other than the first) in the series) 

ei-1 = the discrepancy for the previous value in the series. 

D is compared with tabulated critical values (the lower bound [DL] and the upper bound [DU]) for P < 0.05 (University 

of Manchester School of Economic Studies). 

 

The runs test for serial correlation is based on the direction of the discrepancies  between the observed values and the 

values computed from the regression equation. It compares the number of runs of uninterrupted sequences in the same 
direction (positive or negative) with the number expected in a random sequence.  The runs test is described in 

numerous texts (e.g. Siegel and Castellan 1988: 58-64; Zar 1998: 583-585; Sprent 1993: 82-84).  If there are <21 values 

in the sequence, P is reported as <0.05, <0.1, <0.2 or >0.2 (or, for one-tailed tests, <0.025, <0.05, <0.1 or >0.1), using 

the table of critical values supplied by Zar (1998: App171-App179).  In other instances an approximate P is computed 

by formulae 25.14 to 25.16 in Zar (1998: 584).  

 

Cochrane-Orcutt procedure 
 

The program performs the Cochrane-Orcutt regression procedure (Cochrane and Orcutt 1949, Johnston and DiNardo 

1997) if the original Durbin-Watson D value is below the upper critical level for P < 0.05, or if the runs test for serial 

correlation yields a one-tailed P < 0.05).  The procedure is based on the serial correlation coefficient (rho) between the 
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residuals (the deviations from the regression line, ei, and the residuals of the immediately preceding values in the 

sequence, ei-1.  Rho is estimated by dividing  ∑(ei • e i-1) [for i = 2 to n] by ∑(ei
2) [for i = 1 to n], where n is the 

number of values in the sequence.  This estimate of rho is used to modify the regression equation between X (score) 

and Y (rate or proportion) so as to remove the serially correlated  

error term.  This is done by transforming the X and Y values to X* and Y*, using the formulae 

X*i = Xi - (rho • Xi-1) 

and Y*i = Yi - (rho • Yi-1). 
 

New regression coefficients a* (intercept) and b* (slope) are then computed, by regressing Y* against X*; a*/(1 - rho) 

is taken as the best estimate of the true intercept, and b* as the best estimate of the true slope.  This process is repeated, 
computing new residuals from the original X and Y values and the new coefficients, and then computing a new rho, 

until the new value of rho is within 0.001 of the previous value, or until 10 iterations have been completed.  The newest 

regression coefficients are displayed.  The rates or proportions are then log-transformed, and the Cochrane-Orcutt 

procedure is repeated.  Natural logs are used, after changing any zeros to 0.1 (rates) or 0.00001 (proportions).  The 

percentage change per scale unit is computed from the slope coefficient b* for the log-transformed data, as  

100[exp(b*) – 0.1]. 
 
Smoothed curves 
 
For kernel smoothing, the radius H that the program defines to demarcate the windows within which rates or ratios will 

be averaged is three times the median distance between observations along dimension X. i.e., three times the distance 

between successive scores; the radius is  3 score units, if the default scores are used..  

 
A smoothed value for the rate or ratio Rj at level Xj on the X scale is then calculated as 

 ∑(WiRi) / ∑Wi 

where Ri = each rate or ratio (including Rj) within the window extending (on the X scale) from  Xj - H to Xj + H  

 Wi = 1 - (Xi - Xj)2 / H2 if sample size is not taken into consideration   

Wi = Dj[1 - (Xi - Xj)
2 / H2] if sample  size is taken into consideration        

Dj = denominator of Rj    

 

Probit analysis 
 

Up to 50 proportions or rates may be entered.  

 

The program uses the reiterative procedure described by Reddy et al. (1992) in a paper on their FORTRAN probit-

analysis program. The results coincide with those reported by that program. They may not be identical to those 

computed by programs using other computational procedures. Logarithms to base 10 are used. The maximum number 

of iterations is 30. 
 

The  conversion of the observed proportions to probits, and the subsequent back-conversion  of the improved probits to 

proportions, are based on Table 1 of Finney (1947) (reprinted as Table I by Reddy et al. 1992). Weighting coefficients 

and other factors  required for the computation are obtained from Table IV of Reddy et al. (1992), supplemented at its 

extremes by numbers from Table III of Finney (1947)  and from Finney and Stevens (1948). 

 

The variances of the covariate values that correspond to proportions  of 0.5 and 0.9 are  estimated by (respectively) 

formula 6 of Reddy et al. (1992) and formula 3.6 of Finney (1947).  If the chi-squared heterogeneity test yields a P 

value under 0.05, the variances are multiplied by a heterogeneity factor (Finney 1947: 33) of χ2  / (n - 2), as suggested 

by Busvine (1971), where n is the number of values of the covariate. 

 

If the lowest value of the covariate is zero, suggesting that the study is a dose-response or similar study with a control, 

the proportions are adjusted by using Abbott's formula (Finney 1947, formula 6.2): each proportion (Pi) is replaced by 

(Pi - C)/( 1- C), where C is the proportion observed in the control group. The analyses are then repeated. 
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Spearman-Karber analysis 
 

If the proportions or rates do not have a monotonic trend, they are first monotonized by the method of Ayer et al. 

(1955), as described by Miller and Ulrich (2001), based on the appraisal of successive sets of four, then three, and then 

two adjacent proportions.  

 
For the purpose of the calculation, a fictional level of the covariate is appended at each end of the distribution, differing 

from its adjacent level by the mean interval between levels, and with an allocated probability of 0 or 1. 

 

The program then uses formula 2 of Miller and Ulrich (2001) (equivalent to formula 1.1 of Church and Cobb 1973) to 

compute the mean value of the covariate.  The formula is adjusted if the proportions tend to drop rather than to rise.  

 

The median and interquartile range are computed by linear interpolation from the proportions (Miller and Ulrich 2001). 

The mean value is not displayed if it diverges from the median by more than 20%. 
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C.  APPRAISAL OF A FREQUENCY TABLE WITH THREE OR 
MORE CATEGORIES 

 

This module tests the goodness of fit of a distribution in three or more categories with an expected 

distribution.  It is applicable to tables showing frequencies in three or more nominal  or ordinal 

categories, including tables whose categories represent numbers of “events” per “entity” (0, 1, 2 

etc. accidents per person, or children per family, or deaths per month, etc.) and the corresponding 

numbers of “entities” (persons, families, months, etc.).  The expected distribution may be an even 

one (the same expected number in each category), any specified uneven distribution, or (for 

categories representing numbers of events) the expected frequencies based on a Poisson or 

binomial distribution.  .  Low P-values indicate nonconformity with the expected distribution. 

 

The program also examines each category separately, providing  95% confidence intervals for the 

proportions in the categories, standardized residuals, and tests that compare each category 

with all other categories. 

 

An index of qualitative variation is also provided.     

 

 

Goodness of fit 
 

Goodness of fit is tested by the Kolmogorov-Smirnov test for discrete data, which is appropriate 

only for ordinal categories (categories that have a meaningful sequence), and by chi-square tests, 

which take no account of the order of the categories.   Three chi-square tests are done: Pearson's 

goodness-of-fit test and the log-likelihood-ratio test, each of which is preferred by some 

statisticians (Zar 1998: 475), and the Cressie-Read test, which has been recommended as a 

compromise between the former two.  The program reports whether Williams's criterion for 

preferring the likelihood-ratio chi-square to the Pearson chi-square is met. Since it is generally 

advised that the chi-square tests should not be used if more than 20% of the expected frequencies 

used in the analysis are below 5 or if any expected frequency is less than 1 (Siegel and Castellan 

1988: 49), the number of such frequencies is reported.  If a Poisson or binomial distribution has 

been met, the program combines categories before doing chi-square tests, to avoid expected 

frequencies below 1.  This is not done for the Kolmogorov-Smirnov test, which is not invalidated  

by small expected frequencies. 

 

The expected frequencies based on a Poisson or binomial distribution (only one of which will 

generally be of interest) are calculated from the observed mean number of events per entity (for the 

Poisson distribution) or the probability of an event in the population (for the binomial distribution: 

the binomial success rate); these values are calculated from the data or (optionally) entered by the 

user.  Use of the Poisson distribution assumes that the event is a random occurrence with a low 

probability.  This limitation does not apply to the binomial distribution.  But a binomial distribution 

can be fitted only if the ceiling score (the maximum number of possible events per person, family, 

month, etc.) is known.  For example, if the table shows numbers of families with 0, 1, 2, etc. 

diseased members, the maximum score is the family size, and a binomial distribution can be fitted 

only if the families are of the same size.  To fit a binomial distribution, the frequency of each score, 

from 0 to the ceiling; must be entered.  For a Poisson distribution, zero frequencies at the end of the 
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distribution need not be entered; scores at the end of the distribution can be grouped; for example, 

if the top number of events entered is 5, it can refer to “5 or more”. 

 

The program can be used to test the significance of clustering in time or space if the “entities” are 

uniform time periods or equally-sized areas, by appraising conformity with a Poisson (chance)  

expectation; a low P value points to clustering (a poor fit with a random temporal or spatial 

distribution).  To test for monthly variation, month-by-month data extending over a number of 

years should be used.  A frequency distribution is required, showing the numbers of months with 0, 

1, 2, etc. events.  If the test is based on calendar months (which differ in length) it is of course 

approximate.  Clustering in space can be appraised by comparing the numbers of occurrences in 

equal-sized non-overlapping areas with the chance expectation.  The areas may be defined by 

applying a grid to a map; a frequency distribution is prepared, showing the numbers of areas with 0, 

1, 2, etc. events in a given period. 

 

Analyses of separate categories 
 

A 95% confidence interval is estimated for the proportion falling into each category, and 

standardized residuals (based on the discrepancies between the observed frequencies and those 

expected under the null hypothesis) are computed, to show which categories contribute most to the 

overall goodness-of-fit chi-square.  They are expressed as z scores, which indicate their statistical 

significance.  A standardized residual over 1.96 or under -1.96 indicates significance at the P < 0.05 

level, and a standardized residual over 2.58 or under -2.58 indicates significance at the P < 0.01 

level.  The use of this procedure is described by (inter alios) Sheskin (2007: 264-265). 

 

The program also performs chi-square goodness-of-fit tests that compare the observed frequency in 

each category (in turn) with the combined observed frequencies of the other categories. Both 

unadjusted and Sidak- and Bonferroni-corrected P values are shown. The unadjusted values are 

appropriate for tests based on prior hypotheses, and theadjusted values for tests not based on prior 

hypotheses. Sidak and Bonferroni adjustments both assume that the comparisons are independent. 

The Sidak adjustment is slightly less "pessimistic" (Abdi 2007) - i.e., less severe, less conservative, 

and it has a bit more power than the Bonferroni method. So from a purely conceptual point of view, 

the Šídák method may be preferred). If the assumption of independence is false, both procedures 

"do a good job of protecting against false statements of statistical significance, but have less power 

to detect real differences"  (GraphPad Statistics Guide 2013). 

 

 

These analyses of separate categories are not performed in comparisons with Poisson or binomial 

distributions. 

 

Index of qualitative variation 
 

The index of qualitative variation is computed for both the observed and expected distributions.  It 

ranges from 0 (the most uneven distribution possible) to 1 (an even distribution).  It  is not 

computed if the categories represent numbers of events. 
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METHODS 
 

Binomial and Poisson distributions 
 

The methods of estimating expected frequencies consistent with binomial and Poisson distributions are described by 

(inter alia) Zar (1998: 520-522 and 571-574) and Maxwell (1961: 102-109). 

 

Kolmogorov-Smirnov one-sample test 
 

The Kolmogorov-Smirnov one-sample test for discrete data is described by Siegel and Castellan (1988: 51-56).  The 

appraisal of P is based on the values for two-tailed P = 0.01, 0.05, 0.1 and 0.2 in Table 14.3.3.1 of Zwillinger and 

Kokoska (1999).  The program displays the Kolmogorov-Smirnov statistic D, which is the largest difference detected 

between the cumulative observed and expected frequencies (as proportions of the total number of observations). 

 

Chi-square tests 
 

Pearson and log-likelihood chi-square goodness-of-fit tests are described by (inter alia) Zar (1998: 462-464, 473-475).  

  

Williams's criterion for preferring the likelihood-ratio chi-square to the Pearson chi-square is the presence of a 

difference between any pair of observed and expected frequencies that is not less than the expected frequency 

(Williams 1976). 

 

The Cressie-Read test is described  by Cressie and Read (1984; the formula is on p. 463).  Lambda is set at the 

recommended value of  ⅔.  If a zero expected frequency was entered, it is changed to 0.0000001 to avoid division by 

zero during the computation of chi-square.   When calculating the log likelihood-ratio and Cressie-Read chi-squares, 

0.0000001 is added to the observed frequencies if any of them is zero. The degrees of freedom are the number of 
categories used in the analysis, minus 1, or (if the Poisson or binomial parameter is computed from the data) minus 2. 

 

For chi-square tests of goodness of fit with a binomial or Poisson distribution, the program combines categories at the 

end of the distribution if this is necessary to avoid an expected frequency of less than 1. 

 

Analyses of separate categories: 
 

Confidence intervals for the proportion falling into a specific category are computed by the formulae provided by Fleiss 

et al. (2003, formulae 2.17 and 2.18). These assume conversion of the original table into a 2 x 2 table.. 

 

The standardized residual for category i (Sheskin 2007, pp. 264-265) is 

z = (Oi - Ei) / √ (Ei) 
where  Oi = observed frequency 

Ei = expected frequency 

 

Comparisons of each category with the other categories (combined) require reconfiguration  of the table and  a separate 

chi-square goodness-of-fit test (with a correction for continuity) in each instance (Sheskin 2007, equation 8.5) 

Chi-square = ∑ [sqr (abs (Oi - Ei) - 0.5) / Ei] 

 
Sidak -adjusted P  =  1 - (1 - unadjusted P)

K
, where K = no. of tests.. 

 
Index of qualitative variation 
 

The formula for the index of qualitative variation (Healey 1984) is: 

[1 - ∑(Pi²)]  / {1 – [1 – (1 / k)]} 
where Pi = the fraction of observations in category i 

k = the number of categories 
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D1-4.  APPRAISAL OF NUMERICAL DATA 
 

These modules appraise a set of numerical data. They describe a frequency distribution in terms of 

its central tendency, dispersion, and shape, displays box-and-whisker diagrams, and 

(optionally) performs comparisons of the median or mean with a selected hypothetical value.  

Both the raw data and log-transformed data are appraised. Confidence intervals are estimated for 

the mean, using both he raw data and log-transformed data.  If the observations are based on a 

sample of a population of known size, this size can be entered. A finite population correction is 

applied when estimating confidence intervals for the mean. The mean and its confidence intervals 

are also estimated (in module D2) by a bootstrap procedure. A heterogeneity test for counts is 

performed by module D2; this tests the compatibility of counts based on equa time intervals.  

Tolerance intervals and bounds are estimated (optionally) by modules D1, D2, and D3.Some of 

the results are relevant to all distributions, others only to normal or near-normal distributions 

(normality tests are performed, unless a specific sequence of numbers is entered).  The values may 

be entered individually (in modules D1 and D2), or discrete values (in module D3) or grouped 

values (in module D4) may be entered with their frequencies. Module D3 offers optional tests for 

conformity with a Poisson (random) distribution and for the compatibility of counts based on 

different time intervals. Modules D2 and D3 offer an option for the calculation of a geometri mean 

titre.  This requires entry of a series of titres, e.g. the concentrations of antibodies after 

immunization or during convalescence. A titre of 1:20 must be entered as 20, and a titre of 1:200 as 

200,etc.. 

 

In addition, a variety of tests and measures are provided that are appropriate only if the numbers 

constitute a specific sequence (module 1), e.g. if they are numerical observations made at 

successive points in time or space.  The numbers in the sequence can represent nominal categories, 

e.g. the two sexes, or different diseases (whole numbers must be used for this purpose, e.g. “1” for 

male and “2” for female).  A warning is displayed if a result is not applicable to numbers that 

represent nominal categories. 

 

The tests and measures applicable to a specific sequence include three tests for randomness, tests 

and measures of trend and slope, correlation coefficients and linear regression analysis 

expressing the association between the value and its rank in the sequence, a change-point test, a 

test for centrifugality, and Shewhart and Cusum procedures for detecting an unduly high rise.  

If the sequence is a time series extending over two or more years, the program can appraise trend 

while controlling for seasonal variation, and examine the similarity of the trends in different 

seasons.  Smoothed values are computed to facilitate the drawing of a curve.  The values are 

plotted in a graph, with regression lines and smoothed curves. 

 

 Module B of this program should be used if a sequence of rates or proportions is to be appraised. 

 

 

Central tendency 
 

The program displays the mean, with its standard error and  90%, 95% and 99% confidence 

intervals, the median, with its 95% confidence interval, and three robust estimators of the mean, 

which (like the median) are relatively unaffected by outliers or long tails of the distribution.  These 

are a trimmed mean, (which ignores observations below the 1st decile or above the 9th decile), 
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Huber's m-estimator (which reduces the influence of these observations), and a mean that excludes 

outliers.  The geometric mean and harmonic mean are also displayed.   

 

The mean and its confidence intervals are also estimated by a bootstrap procedure based on 5000 

resamplings (with replacement) of the original observations. This approach may be helpful in, for 

example, estimation of the average cost of medical treatment in a situation where a minority of 

patients require large amounts of resources, or there are very small treatment costs for a high 

proportion of patients (De Portu et al. 2010) 

 

Confidence intervals for a lognormal mean  (on the original scale) are estimated from the log-

transformed data (Zou and Donner 2008). They are appropriate if the distribution of the log-

transformed data is approximately normal. 

 

Finite population correction 
 

If the observations are based on a sample of a population of known size, and this size is entered, a 

finite population correction is applied.  This reduces the variance and hence makes confidence 

intervals narrower.  The correction is necessary only if the sampling fraction is more than 5% 

(Cochran 1977: 25) and sampling is done without replacement, as it usually is (that is, an individual 

cannot be selected more than once).  The correction has little effect unless the sampling fraction is 

large. 

 

Dispersion 
 

The program displays quantiles (quartiles, quintiles, octiles and deciles, when warranted by the 

number of observations), the standard deviation (SD) and variance, the average absolute deviation 

(AAD) from the mean, and the median absolute deviation (MAD) from the median.  The AAD and 

(especially) the MAD are less influenced than the SDI by the shape of the frequency distribution 

and the presence of outliers. The range from the median minus MAD to the median plus MAD 

includes about half of the values below the median and about half of the values above the median, 

and is a parallel to the interquartile range. 

 

The coefficient of variation, which may be used, for example, as an indicator for quality control in 

laboratories. is reported with its 90%, 95%, and 99% confidence intervals. It is computed only if 

the mean is positive. 

 

The program  reports the number of outliers at each end of the distribution (defined as values 

further than 5 x MAD from the median), and performs Grubbs' test for outliers; a low P value 

indicates the presence of one or more values further from the mean than might be expected in a 

normal distribution with the given standard deviation. As an alternative, outliers are also defined in 

relation to the distribution’s hinges (i.e., the 25th and 75th percentiles) and hinge-spread (i.e., the 

difference between the 25
th
 and 75

th
 percentiles): an outlier is then a value that is larger than 1.5 

hinge-spreads above the upper hinge or smaller than 1.5 hinge-spreads below the lower hinge; a 

“severe” outlier is a value that is larger than 1.5 hinge-spreads above the upper hinge or smaller 

than 1.5 hinge-spreads below the lower hinge (Sheskin 2007: 44). 

 

As an option, module D2 can estimate an approximate 95% confidence interval for any chosen 

percentile. 
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Shape of the frequency distribution 
 

The shape of the frequency distribution is appraised in terms of its symmetry or skewness and its 

peakedness or flatness, and four tests for normality are performed for both the raw data and log-

transformed data.   

 

Symmetry or skewness is expressed by the skewness coefficient g1, which provides an estimate of 

skewness in the population, and by Bowley's quartiles-based skewness coefficient, which ranges 

from -1 (extreme skewness to the left) to +1 (extreme skewness to the right).  A coefficient above 0 

means that the distribution is positively skewed (with the modal value above the mean), and a 

coefficient below 0 means that it is negatively skewed (with the modal value below  the mean).  

Three tests are applied: a single-sample test for evaluating population skewness, the Randles-

Fligner-Policello-Wolfe test, and the Wilcoxon signed-rank test of symmetry around the sample 

median.  The Randles-Fligner-Policello-Wolfe test  tests the hypothesis that the values are 

generated from a symmetrical distribution with an unknown median, and it has satisfactory power 

for samples greater than about 20 (Siegel and Castellan 1988: 55-58); since computation is slow, it 

is not done if the total number of individual values exceeds 150. The results of the tests will not 

necessarily coincide.  

 

Peakedness or flatness is summarized by Moors' octiles-based kurtosis coefficient, which can range 

from zero to infinity.  A value of under 1.233 indicates that the distribution is less peaked than a 

normal distribution, and a value of over 1.233 indicates that it is more peaked.  A Kolmogorov-

Smirnov test for an even distribution (flatness of the curve) is performed.  A low P value indicates 

that the distribution curve departs from flatness, in the range extending from the lowest value 

entered to the highest value entered. (To apply the test to a wider range, use the “Enter discrete 

values” option and enter each required new limit with a frequency of zero.)  The test is not done if 

grouped data are entered.   

 

The Lilliefors test for normality examines the deviation of the cumulative frequency from the 

standard normal cumulative distribution; it is performed if there are 6 or more observations; the 

result is reported as P < 0.01, P < 0.05, or “not significant”.   

 

The D'Agostino-Pearson test is based on tests for skewness and kurtosis; it is a method of choice if 

there are 50 or more observations (D’Agostino et al.1990).  

 

The Shapiro-Wilk W test (Shapiro and Wilk 1965, 1968) is based on the correlation between the 

ordered values and some constants that would be closely correlated in a sample from a normal 

population. It is "arguably the best omnibus test" (Royston 1993), although it is affected by tied 

data.  It is performed if there are between 7 and 50 observations. 

 

The Shapiro-Francia W' test (Shapiro and Francia 1972) is based on the correlation between the 

ordered observations and the expected standard normal order statistics. It has about the same 

overall power as the Shapiro-Wilks W test. It is affected by tied data. 

  

The shape of the frequency distribution is pictured in box-and-whisker diagrams  (see below). 
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Box-and-whisker diagrams 
 

Two box-and-whisker diagrams are displayed, to permit a visual appraisal of the shape of the 

frequency distribution..  Each of these pictures the range from the 95
th
 to the 5

th
 percentile (shown 

as a vertical line [two “whiskers”]) and the range from the 75
th
 to the 25

th
  percentile (shown as a 

solid box), in relation to the median or geometric mean (shown as a horizontal line).  The diagrams 

are not displayed if there are fewer than 20 values. 

 

Each diagram permits appraisal of the symmetry or skewness of the distribution (by comparing the 

ranges above and below the median or mean), and its peakedness or flatness (by comparing the 

height of the box with the length of the vertical “whiskers” line). 

 

 
 

The first plot, which is based on the raw data, shows the observed median and 5
th

, 25
th
, 75

th
, and 

95
th
 percentiles.  The second plot is based on the log-transformed data, and is not displayed if there 

are negative or zero values.   It shows the geometric mean  and  the computed 5
th
, 25

th
, 75

th
, and 

95
th
 percentiles of the log values (back-transformed to raw units); these percentiles  assume a 

normal distribution of the log values.  

 

Comparison of the two plots may be helpful  in a decision on whether to use log-transformed data 

in analyses. 

 

Comparison of the median or mean with a hypothetical value 
 

Three tests are provided to determine whether the mean or median differs significantly from a 

specified hypothetical value: a t-test, which assumes a normal distribution, Wilcoxon's signed-ranks 

test, which assumes a symmetric distribution, and a sign test, which is generally less powerful but  

 

Tests for heterogeneity 
 

A test for heterogeneity (the compatibility of counts) is performed if unordered individual values 

are entered. It is appropriate if the values are counts (it is not performed if there are negative or 

fractional values) This might be helpful in, for example, a comparison of the numbers of disease 

cases in successive time periods, a study of possible spatial clustering based on counts of 

occurrences in the cells of a geographical grid, or a reliability study where undue variability of 

successive counts (e.g. of micro-organisms), or an excessive similarity of successive counts, might 

indicate imperfection of the study methods.  

 

Unless the expected numbers (under the null hypothesis) are very small, a Poisson heterogeneity  

test is used. This indicates whether the counts are more variable, or less variable, than might be 

expected by chance, by testing whether the values could reasonably have been drawn from Poisson 

distributions with the same mean (Armitage et al. 2002: 234).  The program reports a one-sided P 

value, and if this is 0.05 or less it states whether there is evidence of more-than-chance variation 

(overdispersion) or less-than-chance variation (underdispersion). 
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If the expected numbers are smaller than 5, a heterogeneity test using the variance of chi-square 

(Haldane 1937, Nass 1959, Cuzick 2000) is performed. 

 

 
 
Randomness 
 

There may be interest in appraising the conformity of a sequence of numbers with random 

expectation, for example when the sequence represents observations whose mutual independence is 

in question, or when it is a set of purportedly random numbers.  The program offers four tests: two 

runs tests, an up-and-down-runs test (which is more powerful), and the mean square successive 

difference test.  For all of these, a low P-value points to departure from randomness; if the result is 

significant the hypothesis that the sequence is random should be rejected. 

 

Two runs tests are provided.  The first, which is done if the sequence contains 25 or more values, 

and these are whole numbers (possibly representing nominal categories), is based on the number of 

runs of identical numbers; a  two-tailed P-value is reported.  The second, done in all instances, is 

based on the number of runs of “high” (above-median) and “low” (median or lower) values; a two-

tailed P-value and two one-tailed P-values are reported.  The one-sided alternatives to the null 

hypothesis (randomness) are the presence of clustering (fewer runs than would occur at random) 

and a tendency toward a uniform distribution (more runs than would occur at random).   

 

The up-and-down-runs test defines a run as an unbroken sequence of increasing or decreasing 

observations.  A two-tailed P value is reported.  The test is not done if the sequence contains only 

two alternative values (e.g. “1” and “2”, representing “male” and “female”). 

 

The mean square successive difference test, which is done if the sequence contains three or more 

different numbers, is appropriate only if normality can be assumed in the underlying distribution; it 

is not meaningful if the numbers represent nominal categories.   A one-tailed P value is shown; a 

low value indicates nonrandom variability and serial correlation (of consecutive measurements). 

 

Tests for trend 
 

Two nonparametric tests for a monotonic upward or downward trend  are provided: the Mann-

Kendall test for trend and the Cox-Stuart test for trend.  One-tailed and two-tailed P-values are 

displayed.  If a time sequence with seasonal data is entered, the Mann-Kendall test is performed 

twice, once without controlling and once controlling for seasonal variation (see below).  

 

The tests of the significance of correlation and regression coefficients (see below) are tests for a 

linear trend. 

 

Slope 
 

If the numbers in the sequence represent equally-spaced observations along some dimension –  for 

example, if they are measurements made daily, weekly, monthly, or annually –  Sen's estimator of 

slope is appropriate.  It estimates the median change per interval (e.g. per day, per week, per month, 

or per year).  The estimator is computed if 4 or more values are entered, and its confidence interval 

if 5 or more are entered.  If a time sequence with seasonal data is entered, Sen's estimator is 

computed twice, once without controlling and once controlling for seasonal variation (see below). 
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Slope is also measured by the b coefficients provided by linear regression analysis (see below). 

 

Correlation coefficients  
 

Spearman's and Kendall's rank correlation coefficients (rho and tau), which range from -1 to +1, 

express the linear association between the rankings of the numbers and their ranks in the sequence.  

Two-tailed and one-tailed P-values are shown; a low P indicates the presence of the association.  

Approximate 95% confidence intervals are computed for tau. 

 

Pearson's correlation coefficient (r), which ranges from -1 to +1, expresses the linear association 

between the numbers and their ranks in the sequence.  Two-tailed and one-tailed P values are 

shown, as is the coefficient of determination (r
2
), which expresses the proportion of the variation 

that is accounted for by this association.  If there are no zero or negative numbers in the series, the 

numbers are log-transformed and the computation is repeated. 

 

Linear regression analysis  
 

The linear relationship between the numbers and their rank in the series is summarized by 

regression equations based on least-squares regression analysis and nonparametric regression 

analysis; 95% confidence intervals are displayed for the slope coefficients.  Least-squares 

regression analysis is done using the raw numbers and also (unless there are zero or negative 

numbers in the series) using log-transformed values.   The latter findings are used to compute the 

relative change, from one number in the series to the next; this may be helpful if the numbers 

represent observations made at equal intervals, along say a time scale.  The nonparametric 

procedure does not assume a normal distribution, and has the advantage of robustness - i.e.  

discrepant 'outlier' observations have a reduced effect; two estimators of the intercept may be  

shown; the second is recommended if deviations from the regression line can be assumed to be 

symmetrical. 

 

The simple regression line and the nonparametric regression line are displayed in a graph, together 

with smoothed curves (see below). 

 

Change-point test 
 

The change-point test appraises whether there is a point at which there is a change in values during 

the sequence; specifically, whether there is a shift in the median of the distribution.  Two-tailed and 

one-tailed P-values are shown.  If a significant change is found (one-tailed P < 0.05), the point at 

which it occurs is reported.  If the sequence contains only two alternative whole numbers, the 

change-point test for binomial variables is used; in other instances the change-point test for 

continuous variables is used. 

 

Test for centrifugality 
 

If the sequence contains only two alternative values (probably representing two nominal 

categories), its conformity with a centrifugal pattern is tested.  A low P indicates a good fit with a 

centrifugal pattern, i.e. a tendency for one of the values to occur near the beginning and end of the 

sequence, and for the other value to appear near the middle.  The appropriate P-value is one-tailed, 

testing a specific hypothesized centrifugal pattern against all alternatives; the program also doubles 

this value and displays it as two-tailed P. 
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Controlling for seasonal variation 
 

If a time series extending over two or more full years is entered,  an option is provided for the 

control of seasonal variation when performing the Mann-Kendall test for trend – the “seasonal 

Mann-Kendall test” (Hirsch et al. 1982) – and when computing Sen’s estimator of slope (see 

above), which is computed twice, once without controlling and once for seasonal variation.  A 

heterogeneity test is performed, comparing the season-specific slopes.  Also, two measures of 

heterogeneity, H and I-squared are provided, with their approximate 95% intervals.  An H value of 

less than 1.2 suggests absence of noteworthy  heterogeneity, whereas a value exceeding 1.5 

suggests its presence, even if the test is not significant.  I-squared expresses the proportion of 

variation that can be attributed to heterogeneity rather than sampling error; a value greater than 

50% may be considered substantial heterogeneity (Higgins and Green 2006). 

 

This option is applied if commas are placed between the values for successive seasons when 

entering the data, and semicolons between the values for successive years.  Each year must have the 

same number of seasons (optionally, 2, 3, 4, 6 or 12), but the number of values per season can vary.  

If 2 or more values are entered for a season, the median of these is used for the Mann-Kendall test 

and Sen's slope estimator (other analyses are based on all the numbers entered).  A space can be left 

if there is no value for a specific season. 

 

Shewhart and Cusum procedures. 
 

These simple procedures are used to see whether there is a rise that is unduly high towards the end 

of the sequence.. If the series represents the numbers of cases of a disease in successive equal  time 

interval (e.g. days or weeks), an unduly high rise may suggest the onset of an outbreak, on the 

assumption that there has been no major change in the population’s size or composition during the 

period covered. If the series is to be updated  and re-analysed periodically (e.g. for early detection 

of an outbreak), it may be convenient to maintain the record of counts in a text file or spreadsheet, 

for copying-and-pasting when necessary.  

 

The Shewhart procedure compares the last value with the mean of  previous values. A number that 

exceeds the mean by more than three times the standard error of the mean is regarded as “unduly 

high”, and if the number exceeds the mean by between two and three  times the standard error, the 

program reports that it  “may be unduly high”.  The ceiling of three standard errors was set by 

Shewhart (1931) on empirical as well as theoretical grounds (at least 99% of observations occur 

within three standard errors of the mean).   

 

The second-last and third-last numbers in the series are excluded when the baseline mean of 

previous values is calculated; this introduces a lag, or guard interval, between the baseline and the 

last number, to prevent the raising of the mean and consequent loss of sensitivity that might occur 

in a gradually increasing outbreak (Buckeridge et al. 2005). 

 

If there are over 15 numbers in the series, counts prior to the 15th-last are ignored,  If there were 

previous outbreaks during the period covered, this reduces the sensitivity of this method by raising 

the mean of previous counts.  
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The Shewhart method is only recommended for detecting a large change (Sonesson and Bock 

2003).  The method assumes a normal distribution of the valuess, an assumption that may be 

especially unjustified if the disease is a rare one (Cardinal et al. 1999).  

 

The Cusum (cumulative sum) methods (Page 1954) use the cumulative sum of the positive 

differences between each of the last seven values and a given baseline (negative differences, where 

the value is below the baseline, are ignored). The baseline is  based on  only seven successive 

values, to avoid the effect of previous peaks (which would raise the baseline value and thus 

decrease the sensitivity of the method. The positive differences are then summated. If and when 

their cumulative sum crosses a chosen  threshold, the program reports that the number at that point 

is unduly large.  

 

Two Cusum methods are used – a simple Cusum method, and a Poisson Cusum method, 

specifically designed for dealing with counts (positive integers) (Lucas 1985). 

 

The baseline for the simple Cusum method  is the mean of seven prior values, plus 0.4 times their 

standard deviation, and the threshold is 5 standard deviations. The parameters  0.4 and 5 were 

found to be the optimal ones in a study of a similar Cusum calculation by Wang et al. (2010), based 

on evaluations of sensitivity, specificity, and timeliness.. They are not necessarily appropriate in all 

instances.  

 

The baseline chosen for the Poisson Cusum method is the rounded-up mean of the same seven prior 

counts, and the threshold is double this value.  

 

Two variants of each procedure are provided for  determining the baseline: a moving-average 

procedure that  uses the last 15 numbers in the series and is performed only if the series includes at 

least 15 numbers, and a fixed-average procedure that uses the last 9 numbers in the series. The 

moving-average method computes a different baseline for the appraisal of each of the last seven 

counts, each time using the seven counts immediately preceding the count under consideration; this 

is the approach used in the Centers for Disease Control’s CI-MILDrly aberration reporting system 

(Hutwanger et al.2005). The fixed-average procedure computes a single baseline , based on the 

seven counts from the ninth-last to the third-last. This leaves a guard interval of two time intervals, 

to prevent the raising of the mean and consequent loss of sensitivity that might occur in a gradually 

increasing outbreak. 

 

Cusums are sensitive to small sustained changes (0et al. 2011), and may signal an outbreak before 

it is apparent from raw incidence data (O’Brien and Christie 1997).  The procedure assumes a 

normal distribution of the counts, an assumption that may be especially unjustified if the disease is 

a rare one (Cardinal et al. 1999).  

 

Tolerance intervals and bounds 
 

Tolerance intervals and bounds provide an indication of the extreme values that most observations 

may be expected to attain, assuming that the observations entered are a random sample of all 

observations. (Unlike confidence limits, which indicate the range within which a given parameter, 

e.g. a mean, is expected to lie). 

 

Tolerance intervals are the limits within which a given proportion of all observations can be 

expected to lie (as opposed to confidence limits, which indicate the limits within which a given 

parameter, e.g. a mean, is expected to lie). The program estimates the intervals within which it may 
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be expected (with 95% or 99% confidence) that 95% or 99% of all observation that are represented 

by the study sample will fall. A normal distribution is assumed. 

 

The upper tolerance bound is the value below which a given proportion (95% or 99%) of all 

observations that are represented by the study sample can be expected (with 95% or 99% 

confidence)  to fall. The lower tolerance bound is the value above which a given proportion (95% 

or 99%) of all observations can be expected (with 95% or 99% confidence) to fall. A normal 

distribution is assumed. 

 

Smoothed values 
 

Two procedures are used for computing “objectively” smoothed values, one based on running 

medians, and one on Fourier transforms.  The running-median procedure is less affected by 

isolated extremely discrepant numbers.  Residual values are displayed, for use in pinpointing “out-

of-line” numbers.  Smoothed values are not computed if the sequence contains only two  

alternative numbers.  Curves smoothed by both methods are shown in the graph (see below). 

 
Graphs 
 
The values in the sequence are plotted in a graph that shows the simple linear regression line 

(labelled R1), the nonparametric regression line (R2),  curves smoothed by the running medians 

(S1) and Fourier-transforms methods (S2), and the change-point (if significant), marked by a red 

triangle. 

 

 
 

The charted values can be read by clicking on the line.  Accuracy can be enhanced by “zooming” – 

any segment of a curve can be magnified by pressing Ctrl and clicking on the graph, and then 

drawing a rectangle to outline the required segment.  The graph can be printed, copied to the 

clipboard for pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

Conformity with Poisson distribution 
 

If data on the distribution of items (events or manifestations) are entered in module D3, conformity 

with a Poisson (random) distribution is examined. This option is applicable to the distribution of 

items per unit, e.g. clinic visits per day, or accidents per week or cases of a rare disease per year, or 

disease episodes per person; or (to cite the literature) flying-bomb strikes in [equal] subdivisions of 

London during World War II, or cavalrymen killed by being kicked by horses per year in Prussia.   

 

Two tests of goodness of fit with a Poisson distribution are performed: a chi-square test and a G-

test (a log-likelihood chi-square test); statisticians differ in their preferences (Zar 1998, p. 475); one 

recommendation is that the G-test is preferable if any observed frequency is more than twice its 

expected value (Williams(1976). In addition, a test of variance compares the mean and variance of 

the number of items per unit, providing another test of conformity with a Poisson distribution, 

which would have the same mean and variance. 
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The program reports the mean number of items per unit (with its 95% confidence limits). For a 

Poisson distribution, this is the "Poisson parameter", which is the same as the variance. 

 

The index of dispersion (variance-to-mean ratio) is reported. A value of 1.00 is expected i n a 

Poisson distribution; a higher value means over-dispersion (which may correspond to the existence 

of clusters of occurrences), and a lower value means under-dispersion. 

 

Compatibility of counts 
 
This procedure examines the compatibility of a set of counts (e.g. counts of accidents) based on 

observations during equal or varying time periods. It uses a chi-square goodness-of-fit test, 

comparing the observed counts with the numbers expected under the null hypothesis of no 

difference between the counts (taking account of any differences in time periods). 

 

If the counts were based on equal time intervals, the program also reports their mean and median, 

standard deviation, standard error, and 90%, 95%, and 99% confidence intervals. 

 

Geometric mean titre 
 

Modules D2 and D3 offer an option for the calculation of a geometric mean titre.  This requires 

entry of a series of titres, e.g. the concentrations of antibodies after immunizaation or during 

convalescence. A titre of 1:20 must be entered as 20, and a titre of 1:200 as 200,etc.. 

 

 

METHODS 
 

When appraising a frequency distribution, observations in a class containing a range of values are attributed to the 

middle of the range, except when computing quantiles. 

 

Note: The accuracy of means and standard deviations has been validated against the certified results for the statistical 

reference datasets (for univariate summary statistics) of average or higher difficulty provided by the National Institute 

of Standards and Technology (http://www.itl.nist.gov/div898/strd/). 

 

Central tendency 
 

Formulae for the standard error of the mean and confidence intervals for the mean are provided by Zar 1998 (formulae 
6.18 and 7.5). 

 

The robust estimators of the mean are a trimmed mean (which ignores observations below the 1st decile or above the 

9th decile), Huber's m-estimator, and a mean that excludes outliers (values further than 5 median absolute deviations 

from the median).  Huber's m-estimator is a maximum-likelihood estimator of the mean, computed by an iterative 

procedure (described by Sprent 1993: 280-282), in which observations beyond a defined distance from the mean are 

allotted weights (dependent on their distance from the mean) that reduce their effect.  The program defines this distance 

as half the interval between the 1st and 9th deciles of the distribution. 

 

Geometric and harmonic means are computed if there are no negative or zero values(the geometric mean if there are at 

least 20 values, the harmonic mean if individual values are entered). 

 
The median is determined in the same way as other quantiles (see below).  For 6 to 100 observations, an exact 

confidence interval (as close to 95% as possible) is displayed for the median, and an approximate 95% interval is 

computed if there are more observations (Campbell and Gardner 2000: 37-39 and Table 18.4). 
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Bootstrap procedure 
 

The bootstrap procedure uses 5000 random samples of the same size as the original sample, each one drawn (with 

replacement) from the values in the original sample. The mean of the 5000 sample means is calculated, and the 

standard error of the mean is computed from the differences between the sample means and the overall mean. 
Confidence intervals are estimated by finding the appropriate percentiles in the series of 5000 ranked mean values 

(Selvin 2004: 149-154).  

  

The random sampling in this bootstrap procedure uses a pseudo-random number generator described by Wichman and 

Hill (1985), which derives each number in turn from three seed numbers that it modifies for subsequent use.  Initial 

values for the seed numbers are generated by Delphi's inbuilt random-number procedures, namely RANDOMIZE, 

using the system clock, and RANDOM, which generates three random numbers from which the required seed numbers 

are computed.  Delphi's RANDOM procedure is augmented by an additional randomizing shuffle, using the algorithm 

of Bays and Durham, as described by Press et al. (1989:  

215-217). The formula for each selection is  

trunc(RM) + 1  
where   R is a random number in the range 0 < R < 1   

M = the number of candidates.  

 

Finite population correction  
 

If the total population size is entered, the finite population correction (fpc) factor for the variance is computed as: 

(N - n) / (N - 1) 
where  N = total population size 

     n = size of sample.    

 

The standard error of the mean is multiplied by √fpc, which reduces the width o the confidence intervals for the mean.  

 

Confidence limits for a lognormal mean 
 
Confidence limits for the mean (on the original scale) of a lognormal distribution are estimated from the mean and 
standard deviation of the log-transformed values, using formula 3 of Zou and Donner (2008). 

 
Dispersion 
 

Each quantile is determined by computing an appropriate index Q, e.g. 

Q = (N + 1) * 0.5 
for the median and  

Q = (N + 1) * 0.75 
for the upper quartile, and then locating the Qth-lowest item in a sequential array of the N observations (see Zar 1998: 

26-27).  Q is first rounded off (in the lower half of the distribution it is rounded up to the nearest integer or half-integer, 

and in the upper half of the distribution it is rounded down to the nearest integer or half-integer); if it is half-way 

between two integers, the quantile is the midpoint between the relevant observations.  If the frequencies of ranges of 

values are entered, the assumption is made that the observations are equally spaced within each group (Cook 1987); the 

class interval is divided into k segments, where k is the number of observations in the class, and the observations are 
allocated to the midpoints of the segments. 

 

This method is generally equivalent to methods 2 ("Exclusive") and 8 ("J & F") of the 15 other methods of calculating 

quantiles found by Langford (2006). To calculate lower and upper quartiles by these two methods, the data set is 

divided into bottom and top halves (excluding the median value from both halves if there is an odd number of 

observations), and the quartiles are then the medians of the bottom half and the top half. These quartiles may differ 

slightly from the "hinges" used in box-and-whisker plots by Tukey (1977), which are calculated in the same way, but 

with the median value included in each half if there is an odd number of observations. 

 

The approximate 95% confidence interval for a selected percentile is estimated by the large-sample method described 

by Conover 1999 (formulae 21 and 22). This option is provided only for samples larger than 20. 
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Confidence intervals for the coefficient of variation (standard deviation / mean) are estimated by the procedure 

described by Donner and Zou (2010) (equation 13) 

 

Formulae for the standard deviation and variance are provided by Zar 1998 (formulae 4.8 and 4.13). 

 

The average absolute deviation from the mean (AAD) and the median absolute deviation (MAD) from the median are 
self-explanatory. 

 

Outliers are defined as values further than 5 x MD from the median. 

 

Grubbs' test for outliers (Grubbs 1969) is performed by finding the value furthest from the mean, and dividing its 

absolute distance from the sample mean by the sample standard deviation.  If there are between 3 and 50 values, the 

critical value at a 0.05 significance level for this statistic G is obtained from a table (US Army Corps of Engineers 

2001, Table f-1).  If the sample is larger (N > 50) an approximate t value is computed by the formula 

t = √{[(N(N - 2)G
2
]  / [(N - 1)2 - NG

2
]} 

and finally the P value corresponding to this t value, at (N - 2) degrees of freedom, is multiplied by N. 

 
Shape of the frequency distribution 
 
Skewness coefficient g1 is computed by the formula (Sheskin 2007: formula 1.20) 

[n∑(xi – xmean)
3
] / [(n – 1)(n – 2)] 

where n = sample size 

 xi = observation i 

 xmean = ∑(xi) / n 

This formula yields the same value as the formula for an unbiased estimate of population skewness provided by 

Sheskin (2007: formula 1.27), citing Cohen (2001: formula 3.18). In a comparison of skewness measures, Joanes and 

Gill (1998) refer to this coefficient (which is used by Minitab and BMDP)  as “b1” (not “g1”). 

 

Bowley's quartiles-based coefficient of skewness and Moors' octiles-based coefficient of kurtosis are computed by 
formulae 6.10 and 6.12 of Zar (1998: 71-72). 

 

The single-sample test for evaluating population skewness  is described by Zar 1998: 115-116) ands Sheskin (2007:  

205-210). The test is a large sample approximation, and there are variants that may supply slightly different results 

from those provided by this program (Sheskin 2007: 211-212). The test occasionally calls for zero division or use of a 

logarithm of a negative number, and is then omitted. 

 

The Randles-Fligner-Policello-Wolfe test for distributional symmetry (Randles et al. 1980) is based on the examination 

of skewness in each possible set of three consecutive values, after arranging the values in monotonically ascending 

order.  It is described by Siegel and Castellan (1988: 55-58) and Hollander and Wolfe (1999: 87-94) 

 
The Wilcoxon signed-ranks test for symmetry (Zar 1998: 119-120; Siegel and Castellan 1988: 87-95) is based on the 

discrepancies between the values and the sample median.  Nondiscrepant values are ignored.  If there are fewer than 20 

pairs significance is appraised by using critical levels for one-tailed P = .05, .025, .01, .005,.0025, and (derived from 

Siegel and Castellan 1988: Table H; and Zar 1998: Table B.12).  If the sample is larger a normal approximation is used, 

with allowance made for ties.  The test uses the formula provided by Siegel and Castellan (1988: 92, formula 5.5), but 

allowing for the effect of ties on the variance by replacing the denominator (as suggested by Sprent 1993: 53 and Mehta 

and Patel 1991: 7-10) by 

√(∑Si / 4), 
where Si = the square of the rank of the difference between paired observations. 

 

The Kolmogorov-Smirnov test for an even distribution is the goodness-of-fit test for continuous data described by Zar 
(1998: 478-481), over a given range.  At each successive level, the cumulative observed frequency is compared both 

with the cumulative expected frequency at that level (expected on the assumption of a continuous distribution over that 

range) and with the cumulative expected frequency at the next level, and the largest absolute discrepancy in both sets of 

comparisons is then compared with critical values computed by a formula given by Zar (p. App85) [the second of the 

formulae cited from Miller (1956)].  

 

The Lilliefors test for normality (Lilliefors 1967) is explained by Sprent (1993: 77-78); it uses the critical values 

provided in Table IV.  
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 The D'Agostino-Pearson test for normality (D'Agostino 1986, D'Agostino and Pearson 1973) uses formula 6.19 of Zar 

(1998).  The  test is not performed if there are under 50 values..  

 

The Shapiro-Wilk W test for normality uses the formulae provided by Conover (1999: p. 450) to compute the test 

statistic, employing the coefficients in Conover's Table A16 [after substituting 0.5888 for 00588 in its top line], and 
then uses Table A18 to convert the test statistic to an approximately normal random variable, from which an 

approximate P value is obtained. 

 

The Shapiro-Francia W' test for normality uses the method described by Royston (1993), employing the inverse 

standard normal distribution function formula described by Hamaker (1978). Tied data are treated as sequential. 

 

Box-and-whisker diagrams 
 
The median and quantiles required for the diagram based on raw data are determined by the method described above. 

 

The geometric mean shown in the diagram based on log data is the mean of the logs of the values, back-transformed to 

raw units by taking its antilog.  The percentiles are computed from the mean and S.D. of the logs of the values (Altman 
1991: 60-63),  back-transformed to raw units.  The formulae are 

 Mean  ±  0.674 • S.D.  for the 25th and 75th percentiles, 

and Mean  ±  1.645 • S.D.  for the 5th and 95th percentiles.   
 
Comparison of the median or mean with a hypothetical value 
 

The t test used for testing against a hypothetical value is described by Zar (1998: 91-98),and  the Wilcoxon signed-rank 

test used for testing against a hypothetical value is described by Hollander and Wolfe (1999: 79-83), with significance 

appraised as for the Wilcoxon signed-ranks test for symmetry (see above). The sign test is an exact binomial test with a 

binomial probability of 0.5 (Sheskin 2007: 289; Siegel and Castellan 1988: formula 4.2). 

 

 
Tests for heterogeneity 
 

The Poisson heterogeneity test is described by Armitage et al. (2002: 234-235) and Cuzick (2000).  The test is not 

performed if non-integers are entered, or if there are fewer than 5 counts, or – to avoid misleading use of the chi-square 

approximation (Armitage et al. 2002: 235) – if the mean count is under 2, or if it is under 5 and there are fewer than 15 

values. 

 

The test is based on a comparison of the observed variance, ∑[(xi - X)
2
],  with the predicted variance X of a Poisson 

distribution.   The chi-square test statistic is 

 ∑[(xi -X)
2
 / X], which is equivalent to 

 (n – 1).s
2
 / X  (Brown and Zhao 2002) 

 where xi  = an individual count 

 X = mean = ∑(xi ) / n 

 n = number of counts 

 s = standard deviation of the observed distribution. 

 

P is derived from this chi-square value, at n-1 degrees of freedom, and reported as a one-tailed P value; but if P is 0.95 

or more and the observed variance is less than the expected variance, 1–P is reported as the one-tailed P value.  If the 

reported P value is 0.05 or less, the program reports whether the findings indicate overdispersion (when the observed 
variance exceeds the expected variance) or underdispersion (when the observed variance is less than the expected 

variance). 

 

The heterogeneity test based on the variance of chi-square  (Haldane 1937, Nass 1959) uses the formulae provided by 

Cuzick (2000: p. 194). 

 
Randomness 
 

The runs test is described in numerous texts (e.g. Siegel and Castellan 1988: 58-64; Zar 1998: 583-585; Sprent 1993: 

82-84).  If there are two alternative values in the series, and there are <21 of each value, or if there are more than two 
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alternative values, with <21 “high” (above-median) values and < 21 “low” (median-or-below) values, P is reported as 

<0.05, <0.1, <0.2 or >0.2 (or, for one-tailed tests, <0.025, <0.05, <0.1 or >0.1), using the table of critical values 

supplied by Zar (1998: App171-App179).  In other instances an approximate P is computed by formulae 24.14 to 24.16 

in Zar (1998: 584). The runs test for a series containing more than two alternative whole numbers uses formulae 24.16 

to 24.18 in Zar (1998: 584-585); it is not done if the series contains <25 values. 

 
For the up-and-down-runs test, the numbers of runs of increasing and decreasing observations are counted twice.  First 

the runs are defined as either monotonically upward or downward (i.e. a pair of equal observations breaks an upward 

run, but not a downward run) and then as either upward or monotonically downward (i.e. equal observations break a 

downward run only).  If these two methods yield different total numbers of runs, they are averaged (Zar 1998: 588-

589). If the sequence contains 20 or fewer values, P values (reported as <0.001, <0.01, <0.02, <0.05, <0.1, <0.2 or 

>0.2) are obtained from Table B.31 of Zar (1998: App182-App183).  For larger numbers, use is made of formulae 

25.23, 25.24 and 25.16 in Zar (1998: 584 and 588). 

 

The test statistic for the mean square successive difference test, Young's C (Young 1941) is calculated by formula 

25.20 in Zar  (1998: 587.  If the number of observations is between 8 and 50, use is made of the critical values for P = 

0.25, 0.10 and 0.05 in Zar's Table B.30 (Zar 1998: App180-App181; for larger numbers, the program uses formula 

25.22 in Zar (1998: 587). 
 

Tests for trend 
 

The Mann-Kendall test for trend (Mann 1945, Hollander and Wolfe 1999: 376) is an application of Kendall's sign-

based test for trend (Hollander and Wolffe 1999: 363-381).  The method is described briefly by McBride (2000) and 

Salmi et al. (2002).  The Kendall sample correlation statistic K is computed by summing the scores obtained from 

pairwise comparisons of all values, the score being +1 if the later value is higher, -1 if the earlier value is higher, and 0 

if they are equal.  If the sequence contains up to 20 values, the one-tailed P value (reported as <0.001, <0.01, <0.025, 

<0.05, <0.1, or >0.1) and corresponding two-tailed value are obtained from Table A.30 of Hollander and Wolfe (1999: 

724-731).  If ties are present, this P value is approximate.  If there are more than 20 values a large-sample 

approximation is used; the variance of K is computed by formula 4 of Salmi et al. (2002), making allowance for ties, 
and the test statistic Z (from which the P value is derived) by formula 5, which includes a continuity correction for K. 

 

If a time sequence with seasonal data is entered, the Mann-Kendall test is performed twice, once without controlling for 

seasonal variation and once controlling for seasonal variation (see below). 

 

The Cox-Stuart test for trend is described by Cox and Stuart (1955) and Sprent (1993: 37-39).  The test is based on 

comparisons of the numbers in the first and second halves of the set.  The ith number (in the first half) is compared with 

the (i + N/2)th number (in the second half) if the number of values (N) is even, and with the ∑(i + 1 + N/2)th number if 

N is odd.  A binomial test with probability 0.5 is then applied to the numbers of comparisons showing downward and 

upward differences between the two halves of the set. 

 

Slope 
 
Sen's estimator of slope (Sen 1968) is computed by comparing each possible pair of values and dividing their difference 

(subtracting the earlier value from the later value) by the difference between their ranks in the sequence (Salmi et al. 

2002).  The median of these results is the Sen estimator.  For 5 to 14 values, an exact confidence interval is displayed, 

and an approximate 95% interval is computed if there are more values (Campbell and Gardner 2000: 37-39 and Table 

18.4). 

 

If a time sequence with seasonal data is entered, Sen's estimator is computed twice, once without controlling for 

seasonal variation and once controlling for seasonal variation (see below) 

 

Correlation coefficients 
 
Kendall's tau is computed from the Kendall sample correlation statistic K (see above) by formula 8.34 of Hollander and 

Wolfe (1999: 382), taking account of tied ranks, and its approximate 95% confidence interval by formulae 8.37 to 8.39.  

The significance of tau is appraised by the Mann-Kendall test (see above). 

 

Spearman's rho (Siegel and Castellan 1988: 235-244) is computed by a procedure that takes account of tied ranks (an 

adaptation of the SPEAR procedure in Press et al. 1989: 538-539).  An approximate 95% confidence interval (Zar 

1998: 398) is estimated if N is 10 or more and rho is 0.9 or less, based on the Fisher z transformation.  The confidence  
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limits are  

exp[2(z ± 1.96•SEz) - 1] / exp[2(z - 1.96•SEz) + 1] 
where SEz = √[1.06 / (N – 3)] as recommended by Fieller, Hartley and Pearson (1957, 1961), and  

 z = 0.5•ln[(1 + rho) / (1 - rho)]    
If there are 30 or fewer numbers, the significance of rho is appraised by the use of critical levels for one-tailed P = 0.10, 

0.05, 0.025, 0. 01, 0.005, and 0.001 (Siegel and Castellan 1988: Table Q).  If there are over 30 numbers, a t-test is used 

(Siegel and Castellan 1988: 243, footnote; Press et al. 1989: formula 13.8.2, p. 537). 

 

A modification of the PEARSN procedure in Press et al. (1989: 535) is used to compute Pearson's correlation 

coefficient and its significance (Press et al. 1989: formula 13.7.5, p. 533).  Natural logs are used to log-transform the 
numbers. 

 

Linear regression analysis 
 

Linear regression coefficients are computed by formula 14.2.6 of Press et al (1989, p. 554), and standard errors, 

confidence intervals and significance by formulae 16.20 and 16.21 of Zar (1998: 337).  Natural logs are used to  

log-transform the numbers.  If log-transformed values are used, the percentage change from one number in the series to 

the next is computed from the b (slope) coefficient by the formula 

(-1 + exp(b)) • 100. 

 
The nonparametric regression analysis procedures are described by Daniel (1995: 622-625), Sprent (1993: 195-202) 

and Sen (1968).  The analysis is not done if  there are over 146 values in the sequence.  Three alternative ways of 

estimating beta (the slope coefficient) are used.  
 

If up to 30 numbers are entered, Theil's estimator (Theil 1950) is computed by a method described by Sprent (1993: 

195-198).  If more than 30 numbers are entered, Sen's method (Sen 1968) is used ; but if there are more than 146 

different values the program employs the abbreviated Theil method (Sprent 1993: 198-202), which uses a systematic 

sample of the data. For the Sprent and abbreviated Theil methods, which (unlike Sen's method) assume distinct values 

of the independent variable, the program treats tied observations as if they were not identical by imputing differences of 

(alternately) 0.000001 or -0.000001. 

 

The point estimate of beta (β) is the median value of βij, where 

βij = (yj - yi) / (xj - xi) 
for each pair of values of the independent variable x (xi and xj) and the corresponding values of the dependent variable 

y (yi and yj). Using Sprent's method, βij is calculated for all of the N(N-1)/2 possible pairs of values; zero values of (xj - 

xi) are changed to 0.000001 or -0.000001 (alternately).  In Sen's procedure βij is calculated only if (xj - xi) is not zero.  

In the abbreviated Theil procedure, each of the first N/2 pairs in the sequence is then linked with the pair situated N/2 

positions further along the array; βij is computed only for these linked observations; zero values of (xj - xi) are changed 

to 0.000001 or -0.000001. 

 

Alpha is estimated by two alternative formulae.  The first is the median of the (yi - xi) terms for the N pairs of 
observations, and the second (Daniel 1995: 623-624) is the median of the averages of the (yi - βxi) terms calculated for 

each of the pairwise combinations of observations. . Both estimators are shown if they differ.  The first estimator is 

recommended if deviations from the regression model cannot be assumed to be symmetrical; the second estimator of 

alpha (which is not calculated if the abbreviated Theil procedure is used) is recommended if the symmetry assumption 

is tenable.  The regression line shown in the graph (see above) uses the first estimator of alpha. 

 

Confidence intervals for beta are obtained from an array of values of bij in order of increasing magnitude.  Sen's method 

(Sen 1968) uses critical values provided by a large-sample formula based on a variance estimate corrected for ties, and 

Sprent's method (Sprent 1993: 199-202), based on Theil's,  uses critical values based on the critical value for Kendall's 

tau for significance at the nominal 5% level in two-tailed tests, obtained from Siegel and Castellan (1988: 363, Table 

RII) and Sprent (1993: Table IX).  Approximate confidence intervals are estimated in a similar way in the abbreviated 
Theil procedure, using critical values based on formula 2.3 in Sprent (1993: 34). 

 

Change-point test 
 

The change-point test (Siegel and Castellan 1988: 64-70) uses a method appropriate for binomial variables (Siegel and 

Castellan 1988: 65-67) if the sequence contains only two alternative whole numbers, and in other instances it uses a 

method appropriate for continuous variables (Siegel and Castellan 1988: 67-70), with allowance for ties.   For the 
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binomial-variable test, if each of the alternative whole numbers occurs 25 times or fewer, two-tailed P values are 

obtained from Table Lii of Siegel and Castellan (1988: 350-351) for  P<0.01, <0.05 and <0.1; for larger numbers, Table 

Liii of Siegel and Castellan (1988: 352) is used; half the two-tailed P value is reported as the one-tailed P value.  For 

the continuous-variable test, if both the number of values below the change-point and the number after the change-

point are 10 or less, one-tailed and two-tailed P values are derived from Table B10 of Altman (1991: 532-533); formula 

4.12 of Siegel and Castellan (1988: 68) is used for larger numbers, after allowing for ties by changing its denominator 
to the expression for the variance shown in formula 6.12 (p. 134). 

 

Test for centrifugality 
 

For the test of centrifugality (Ghent 1993), the program first constructs a table with 2 rows (for the two alternative 

values) and k columns (for the ranks in the sequence), showing the ranks of the two values; it then changes the ranks in 

the right-hand part of the table (beyond the median rank) by numbering them from the right-hand end, and 'folds' the 

right-hand part over the left-hand part, combining cells with the same rank.  A Mann-Whitney test is then applied to 

this table.  For small samples the one-tailed P-values are reported as <0.0005, <0.005, <0.01, <0.025, <0.05, <0.10 or 

>0.10.  If there are 10 or fewer in each row, use is made of critical values provided by Zar (1998: App89-App100: 

Table B11); otherwise a normal approximation is used. 

 
 
Controlling for seasonal variation 
 

If a time sequence with seasonal data is entered, the Mann-Kendall test and computation of Sen’s slope estimator (see 

above) are repeated, in such a way as to control for seasonal variation.  If more than one value is entered for a specific 

season, the program uses the median of these values; seasons with missing values are omitted from the calculations. 

 

For the seasonal Mann-Kendall test (Helsel and Hirsch 2002: 338-341), K and its variance (see above) are computed 

separately for each season, by making pairwise comparisons of the values (in that season) for different years.  Ties are 

not taken into account when computing these variances.  The seasonal K values and variances are then summated, and 

the corresponding P value is computed by using the large-sample approximation.   
 

For Sen’s estimator of slope, (Helsel and Hirsch 2002: 340), separate sets of comparisons are made, each one limited to 

pairwise comparisons of the values for a specific season; the median of these results (for all seasons combined) is the 

Sen estimator.  Confidence intervals are obtained as described above. 

 

The heterogeneity test comparing the season-specific slopes uses formula 10.11 of Fleiss (1981: 163), taking yi as the 

slope estimator for a specific season, and wi as the inverse of its variance.  The measures of heterogeneity (H and I-

squared) are computed by the methods described by Higgins and Thompson (2002).  H is computed by Higgins and 

Thompson's formula 6, and increased to 1 (indicating absence of heterogeneity) if it less than 1.  A test-based interval is 

computed by Method III.  I-squared and its 95% interval are computed from H, using formula 10. 

 

Shewhart and Cusum procedures  
 
Shewhart index = ( X  - M) / SE 

where  X = the last count in the series 

           N = the mean of seven counts, from the ninth-last to the third –last 

SE = the standard  error of the mean 

An index of over 3 is taken to mean that X in unduly high, and an index of between 2 and 3  that it may be unduly high.  

 
Simple Cusum procedure: 

 

Si is computed for each of the last seven values (X1 to X7) in the series. 

 

Si = max(0, Si-1 + [Xi M + (fD)]) /SD (Hutwagner et al. 2005) 

where  M = mean of seven prior values* 

SD = standard deviation of seven prior values*; if SD = 0, it is changed to 0.2 

 f = 0.4 

 

The values of Si are summed cumulatively (S0 being set at zero). If  cusum  (i.e. ∑Si, which can only rise or remain 

constant, exceeds 5xSD, an “unduly high” message is shown. 
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* The choice of the seven prior values is different for the moving-average and fixed-average methods (see text). 

 

Poisson Cusum  procedure: 

 

S i is computed for each of the last seven values (X1 to X7) in the series. 
 

Si = max(0, f - Xi ) 
 

where f (the baseline) is determined from the mean of seven prior values, as explained in the text. 

 

The values of Si are summed cumulatively (S0 being set at zero). If  cusum  (i.e. ∑Si ) exceeds the threshold  (which is 

set at 2xf), an “unduly high” message is shown. 

 
D intervals and bounds 
 
The limits of the tolerance interval are 

    mean  -  k * S.D 

and mean  +  k * S.D  

where  k is a factor (based on the sample size, the confidence level, and the required proportion of observations) 

derived from a table provided by, e.g., Montgomery and Runger (2011). Approximatee interpolation is used where 

necessary. 

 

The tolerance bounds are calculated by formula 7.7 of Zwillinger and Kokoska (1999) 

 

Smoothed values 
 

Smoothed values are computed by adaptations of the running-medians and Fourier-transforms procedures described by 

Hartwig and Dearing (1979: 36-42) and Press et al. (1989: 544-545) respectively.   

 

Smoothing by running medians is done in several stages.  First, 5-point moving medians are calculated: each number 

except the first two and the last two is replaced by the median of the set of five successive numbers of which it is the 

centre.  The first and second numbers are replaced by the median of the first three numbers in the original series, and 

the last and second-last numbers are replaced by the median of the last three numbers in the original series.  Three-

point moving medians of the adjusted values are then calculated, copying the modified first and last values unchanged, 

and this process is repeated until no further changes occur.  Two-point running medians are then calculated, and this 

step is repeated once; this may modify all but the first and last values.  The residuals are displayed, i.e., the 
discrepancies between the original numbers and the values computed by this method. 

 

The Fourier-transform smoothing method uses an adaptation of the SMOOFT procedure in Press et al. (1989: 544-

545), who say “It removes any linear trend, and then uses a Fast Fourier Transform to low-pass filter the data.  The 

linear trend is re-inserted at the end”.  The program arbitrarily defines the width of the window used when smoothing 

neighbouring points as 0.2 times the total number of values in the sequence. 

 

Conformity with Poisson distribution 

 

Before the goodness-of-fit tests are performed, the tail-end categories are pooled, following the advice given by 

Zar(1998 p. 575): "arrive at a tabulation having no expected frequencies less than 1.0", which determines the number of 

degrees of freedom. 
 

The  chi-square goodness-of-fit test uses the method described by Zar 1998 (pp. 575-6)), and follows Zar's advice on 

the pooling of tail-end frequencies ("arrive at a tabulation having no expected frequencies less than 1.0)", which 

determines the number of degrees of freedom. 

 

The procedure for the chi-square test of goodness of fit and the G-test are described by Zar (1998: pp. 575-6 and 474, 

respectively). Zar's advice on the pooling of tail-end frequencies ("arrive at a tabulation having no expected frequencies 

less than 1.0”) is followed; this determines the number of degrees of freedom. 

 

Formulae for the test of variance are provided by Selvin (2004, p. 124). 
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An approximate confidence intervals for the mean number of items per unit is calculated by  formula 8 of Khamkong 

(2012). 

 

Compatibility of counts 

 

The formula for the chi-square goodness-of-fit test (Arsham 2015) is 

   chi-square = ∑[sqr(Ni - Ei) / Ei] 
where  Ni = each observed count 

 Ei = the corresponding expected count if the null hypothesis is true 

If the time periods are equal,  

   Ei = ∑Ni  /  k 

where  k = number of counts. 

If the time periods are unequal,  

 Ei = Ti * [∑Ni)  / ∑(Ti)] 
where  Ti = the time period corresponding to count Ni. 
 

Degrees of freedom = k - 1. 

 

The test may be misleading unless Ei > 5 for 80% or more of the counts, and (if k < 5) for all counts (Arsham 2015).  A 

warning is displayed if these conditions are not met. 

 

Confidence intervals for the mean count (estimated if the time periods are equal) are based on its standard error. If the 

lower confidence interval is less than zero, it is reported as zero. 

 

The test may be misleading unless Ei > 5 for 80% or more of the counts, and (if k < 5) for all counts (Arsham 2015).  A 

warning is displayed if these conditions are not met. 
 

Confidence intervals for the mean count (estimated if the time periods are equal) are based on its standard error. If the 

lower confidence interval is less than zero, it is reported as zero. 

 

Geometric mean titre 

 

The geometric mean titre is the antilogarithm of the arithmetic mean of the log-transformed data. If the n titres that are 

entered are 1/a, 1/b, 1/c, etc. the geometric mean titre is the antilogarithm of [(ln(a)+ln(b)+ln(c)...)] / n. 
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E.  APPRAISAL OF SEASONAL VARIATION 
 

This module provides procedures for the appraisal of seasonal variation in the incidence of disease 

consultations, hospital admissions, onsets of sickness absences, or other events, using monthly, 

weekly, or daily data.   

 

If monthly or daily data are entered, the program applies Freedman's tests (using monthly totals or 

daily data, respectively) and three tests based on the monthly totals: Edwards's test (as modified 

by Roger), the ratchet circular scan test, and Hewitt's test (as extended by Rogerson).  If weekly 

data are entered, Pococks's harmonic-analysis procedure is used.  The data and results are 

summarized in graphs. 

 

Data are required for a full year or for a set of full years.  If monthly totals are entered, data for 

separate years must be combined before entry, on the assumption that there is no long-term trend (a 

rising trend, for example, will mean a higher incidence at each year's end than at its start, spuriously 

suggesting seasonal variation).  If events are entered by weeks, the number of events in each 

separate week (e.g., 208 weeks in a 4-year period) must be entered in turn; any odd days at the end 

of the last year are dropped.  If events are entered by days, each event must be entered separately 

by entering its date (day and month) of occurrence; the entries in separate years must be combined 

before entry, on the assumption that there is no long-term trend. 

 

As a default, the lengths of the months are taken into account in the tests that use monthly or daily 

data.  If the numbers of individuals at risk vary in different months, they can be entered, and 

appropriate correction factors will be used in Edward's and Hewitt's tests.  Optionally, these 

corrections can be applied in addition to month length, or instead of month length.  The latter 

option is appropriate if the number at risk is influenced by the length of the month (e.g. monthly 

numbers of births, in a study of congenital anomalies).  If data for two or more years are entered, 

the annual numbers at risk for each month should be combined before entry. 

 

 

Freedman's tests 
 

Freedman's tests (for monthly and daily data) detect departures from a uniform occurrence 

throughout the year.  The test based on monthly totals may be safely used if the total number of 

events is 50 or more; for smaller samples, exact dates should be entered (Freedman 1979).   

 

Edwards's test 
 

Edwards's test (Edwards 1961) tests the null hypothesis against the occurrence of a sinusoidal curve 

with a 12-month period, i.e. a single annual peak and a single trough, with six months between the 

two.  The program computes the amplitude of the curve (as a percentage of the peak frequency), an 

angle that indicates the time of the peak, and the date that corresponds to this angle.  The 

significance test uses Roger's modified procedure (Roger 1977), and is appropriate even for total 

sample sizes as small as 20.  If the test is significant, (P < 0.05), the time of the peak is indicated in 

a graph (see below).  The number of individuals at risk in each month may be entered if they need 

to be taken into account  (see above). 
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Ratchet circular scan test 
 

The ratchet circular scan test (Wallenstein et al. 1989) is based on the maximum number of events 

in two or three consecutive months.  It is sensitive to a relatively sharp increase in incidence for a 

season, superimposed on a constant incidence over the entire year.  The test is used if the total 

number of events is 8 or more.   Significant peak periods (P < 0.05) are indicated in a graph (see 

below). 

 

Hewitt's rank-sum test 
 

Hewitt's rank-sum test detects a 6-month seasonal peak (Hewitt et al. 1971), and, as suggested by 

Rogerson (1996) a 5-month or 4-month peak.  It is a conservative test.  Significant peak periods 

(P < 0.05) are indicated in a graph (see below); a set of high-incidence months that includes 

December and January is split into two segments in the graph..  Rogerson points out that  the length 

of the pulse should be hypothesized in advance, since the simultaneous testing of multiple 

hypotheses may lead to misleading P values. 

 

Pococks's harmonic-analysis procedure 
 

For Pococks's harmonic-analysis procedure (Pocock 1974), the population at risk should be a fixed 

cohort of individuals at risk throughout the period (if the population is a changing one, this may 

affect the occurrence of events). 

 

The number of events must be entered for each week in turn (e.g. 208 entries in a 4-year period), 

starting with Jan. 1st to 7th of the first year, and dropping any odd days at the end of the last year. 

 

The mean weekly number per week and the variance of the weekly numbers are reported, and a  

test for weekly variation is done; a low P value indicates for more-than-chance variation.  Tests for 

seasonality and non-seasonal cyclic variation are then performed, and the seasonal, non-seasonal 

and random components of variation are computed.  For these purposes, seasonal variation is 

defined as the occurrence of cyclic trends (with periods ranging from 2 to 52 weeks) that have an 

exact number of cycles (1 to 26) in a 52-week period, and non-seasonal variation as the occurrence 

of other cyclic trends.  The ratio of seasonal to random components of variation is reported.  Since 

this ratio is influenced by the mean number of events per week, a standardized ratio is computed 

(for a standard mean of 10 events per week);  this permits comparisons with the relative importance 

of seasonal variation in other sets of data (e.g. for other populations or events, or at other times). 

 

The program computes the statistical significance of seasonal harmonics with cycles of different 

lengths, and the proportion of variance that is attributable to the harmonic is reported if P < 0.05 

and the proportion of variance is at least 1%.  Interest will usually centre on the harmonic whose 

cycle has a period of 52 weeks.  If this harmonic is significant (P < 0.05) and accounts for at least 

5% of the variance; the peak month is reported and shown in the graph; this is an approximation, 

based on the peaks in different years, and is not displayed if the peaks in any two years differ by 

more than six weeks. 
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Graphs 
 
If monthly or daily data are entered, the monthly totals are plotted in a graph, which also shows any 

statistically significant peak periods of two, three, four, five or six consecutive months, marked as 

P2 to P6 respectively, and  (if Edwards’s test is positive) the peak date of a 12-month sinusoidal 

curve, marked by a red triangle. 

 
  MONTHLY  DATA     WEEKLY  DATA 

  
 

If weekly data are entered, the weekly totals (pooling the data for the separate years, on the basis of 

the fiction that each year contains precisely 52 weeks) are plotted in a graph.  If Pococks's 

harmonic-analysis procedure finds that the harmonic whose cycle has a period of 52 weeks is 

statistically significant (P < 0.05) and accounts for at least 5% of the variance, the approximate 

month in which its peak occurs is indicated in the graph.  This is an approximation, based on the 

peaks in different years, and it is not reported if the peaks in any two years differ by more than six 

weeks. 

 

 

METHODS 
 
Freedman's tests 
 

Freedman's test for seasonal variation using exact dates provides a test statistic derived from V(N), which is a 

Kolmogorov-Smirnov type statistic (see Freedman 1979).  If monthly totals rather than exact dates are entered, the test 

employs a step distribution similar to a Kolmogorov-Smirnov type statistic for a discrete distribution.   

The critical values are:  

For exact dates: P < 0.1, 1.620; P < 0.05, 1.747; P < 0.025, 1.862; P < 0.01, 2.001.     
For monthly totals: P < 0.1, 1.29; P < 0.05, 1.41; P < 0.01, 1.66. 

 

Edwards' test 
 

Edwards' test (Edwards 1961) provides the amplitude of the curve, the angle that indicates the time of the peak, and a 

chi-square test, using Roger's modification of Edwards' test (Roger 1977).  An approximate date corresponding to the  

peak angle is calculated by determining the proportion of the year equal to  
d = 365.25 / 360 

where  d is the number of days since beginning of the year. 

Correction factors are applied before Edwards's test is performed (Walter and Elwood 1975).  Each value of Ni (the 

number of events in month i) is multiplied by a correction factor  
∑Mi / Mi 

to produce Ni', and each value of Ni' is then multiplied by  

∑Ni / ∑Ni' 
to obtain a final adjusted value.  If numbers at risk are not entered (see above), Mi is the length of the month.  If 

numbers at risk are entered, Mi is either the number at risk (instead of the length of the month) or a person-time 

denominator (the number at risk multiplied by the length of the month). 
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Ratchet circular scan test 
 

For the ratchet circular scan test (Wallenstein et al. 1989), peak periods (of 2 and 3 consecutive months, respectively) 

are identified, by comparing the numbers of events in each possible period of that length.   

 
If the total number of events is between 8 and 35, P-values are based on critical levels (P < .05, <.025, and < .01) for n, 

the maximum number of events in (respectively) 2 or 3 months.  These critical levels are derived from Table 1 in 

Wallenstein et al. (1989).  For larger numbers of events, a test statistic R is calculated by the formula 

R = (n - 1 - N) /  √]Nw(1 – w)] 
where  n = number of events in the peak period 

 N = total number of events  

 w = the number of days in the peak period, divided by 365. 

Critical levels of R (for P < 0.1, < 0.05, < 0.025, < 0.01 and < 0.005) are read from the asymptotic distributions shown 

in Figs. 2 and 3 in Wallenstein et al. (1989).  These are applicable for N of 50 or more and, as conservative estimates, 

for N of 36 to 49 (the program displays an appropriate warning). 

 
Hewitt's test 
 

For Hewitt's test (Hewitt et al. 1971), the monthly numbers of events are ranked.  For each period (4, 5, and 6 months), 

all possible rank sums based on consecutive months are examined, the set of months with the highest rank sum is 

defined as the peak period, and the significance level is based on this rank sum.  Tied ranks are reduced by first 

adjusting the monthly frequencies according to the length of the month and any correction factors entered; if ties occur, 

an average rank is used (Walter 1980).  The program uses exact significance levels provided by Walter (1980) and 

Rogerson (1996), with interpolation for non-integer values (Walter 1980). 

 

Pococks's harmonic-analysis procedure 
 
The harmonic-analysis procedure that is applied to weekly data, which is based on the theory of Fourier analysis, is 

described in detail by Pocock (1974).  The weekly numbers are treated as Poisson random variables, on the assumption 

that events are rare. 

 

The tests for non-chance variation, seasonal variation, and non-seasonal variation are based on (respectively) the index 

of dispersion (Pocock's formula 7) and Pocock's formulae 9 and 14. Measures and tests of seasonal variation are based 

on the combination of harmonics that have a cycle that appears an exact number of times (from once to 26 times) in 

each 52 weeks (formula 3). The seasonal sum of squares is defined by formula 6 and tested by formula 9, and the non-

seasonal sum of squares is tested by formula 14.  The percentages of variation attributable to random and seasonal 

variation are computed by formulae 10 and 12; if the sum of these percentages exceeds 100% it  is reduced to 100%, 

keeping their ratio the same (Pocock p. 109). The standardized ratio of seasonal to random components of variation is 

computed by formula 17. 
 

Tests for individual seasonal harmonics are based on formula 8, and their contributions to sample variance are defined 

by formula 13 (negative values being taken as 0%).  If the sum of the individual seasonal components diverges from 

the total seasonal component (formula 6), the individual components are rescaled to the total seasonal component.  

 

The approximate peak week in a one-year cycle is estimated by averaging the peak weeks in each 52-week period.  The 

month in which this week falls is reported as the approximate peak month if the one-year cycle is significant (P < 0.05) 

and accounts for at least 5% of the variance, and the peaks in any two years do not differ by more than six weeks. 
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F.  APPRAISAL OF SURVIVAL DATA (TIME-TO-EVENT DATA) 
 
This module provides procedures for use in studies of survival; that is, in cohort studies that 

investigate the period of freedom from a specified event, such as death, occurrence of a disease 

complication, onset of pregnancy, discharge from hospital, or return to work. 

 

The program estimates median and mean survival times (with their confidence intervals) and the 

incidence rate of the event, and computes cumulative survival proportions (the percentage of 

subjects who are still free of the event after a given period) at each survival time entered, and also 

for any selected periods of special interest (e.g. 2-year or 5-year survival proportions).  A survival 

curve is displayed. 

 

Either survival times or life-table data may be entered.   A survival time is defined as the number of 

time units (usually days or months) from the start of observation until occurrence of the event, or (if 

the event has not occurred) until withdrawal from observation.  The main reasons for withdrawal, 

or censoring, are loss of contact, circumstances that dictate removal from the study, and conclusion 

of the study.  Censored survival times are entered by appending “+” to the survival time, e.g. 

“37+”.  Survival times may be entered separately for each subject, or the number of subjects with 

each survival time may be entered; optionally, dates may be entered (the date at which the 

observation of each subject started and the date of the event or withdrawal from observation), and 

the program will compute the survival time (inclusive of both dates, to avoid zero survival times).   

If survival times are entered, the Kaplan-Meier life table procedure is used.  Alternatively, life-table 

data may be entered, i.e. the numbers of events and withdrawals in successive periods (e.g. in the 

first year, the second year, etc.) after the start of follow-up; these periods can differ in length;  if life 

table data are entered, a simple cohort life table computation procedure is used 

 

The procedures assume that there is no withdrawal bias.  Other assumptions are that (if subjects 

entered the study at different times)  the probability of the end-point event did not greatly alter with 

time, and (if life-table data are used) that within each follow-up period, both end-point events and 

withdrawals are evenly spaced. 

 

The module can also calculate YPLL (years of potential life lost), VYPLL (valued years of 

potential life lost), DALY (disability-adjusted life years), and VYPPL (valued years of potential 

productivity lost). This requires entry of the numbers of deaths and/or onsets of disability at each 

age. 

 

 

Median survival time 
 

If survival times are entered and none are censored, their median is reported.  If there is censoring 

or if life table data are entered, the median survival time is estimated by the longest observed 

survival time for which the cumulative survival probability is 50% or less.  Exact or approximate 

confidence intervals are reported.  If the survival probability is not precisely 50% at the reported 

median survival time, an alternative median is also reported, based on linear interpolation between 

the times straddling the 50% mark 
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Mean survival time 
 

The mean survival time is displayed if survival times are entered, with its confidence intervals.  If 

any survival times are censored, the mean is an estimate. The program also computes a 

mean/median survival time based on the assumption that the distribution is exponential; if this is 

very different from the observed median, this assumption can be rejected. 

 

Incidence rate of the event 
 

The average rate of events and its confidence intervals are estimated from the mean survival time 

and its confidence limits.  If any survival times are censored, the rate is an estimate. 

 

Cumulative survival proportions 

If survival times are entered, cumulative survival proportions are estimated by the Kaplan-Meier  

procedure.  Standard errors and 95% confidence intervals are displayed for periods in which the 

user has indicated special interest (e.g. 2-year and 5-year survival proportions). 

If life table data are entered, the program uses the usual life table technique, and survival 

proportions are displayed with their standard errors and 95% confidence intervals... 

 

Extreme bounds are displayed for the cumulative survival proportion, based on assumptions of 

maximal withdrawal bias (see below). 
 

In a comparison of two samples, confidence intervals for the difference between their cumulative survival at a given 

time can be estimated from the standard error of the difference (SED) (the square root of the sum of the squares of the 

two standard errors); the approximate 95% confidence limits are 1.96(SED) above and below the observed difference. 

 

Survival curve 
 
The cumulative survival percentages are plotted by the time interval since the start of follow-up.  If  

any survival times are censored, the graph also displays the extreme bounds of the survival 

percentages, based on assumptions of maximal withdrawal bias (see below). 

   

 
 

The charted values can be read by clicking on the line.  Accuracy can be enhanced by “zooming” - 

any segment of a curve can be magnified by pressing Ctrl and clicking on the graph, and then 

drawing a rectangle to outline the required segment.  The graph can be printed, copied to the 

clipboard for pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

Withdrawal bias 
 

The procedures assume that the survival of people withdrawn from follow-up is the same as that of 

people followed up.  This may not be so; it has been suggested that the results may be questionable 
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if the proportion of withdrawals reaches 10% before the point at which the survival proportion is 

computed (Axtell, 1963).  If survival times are entered, this proportion is reported at each stage 

(unless over 50 survival times are entered).   

 

As a guide to the possible impact of withdrawal bias, the program also computes extreme estimates 

of the cumulative survival proportions, assuming maximal bias (first in one direction and  

then the other) of withdrawn subjects.  These extreme bounds are shown in the graph. 

 

YPLL,  VYPLL,  DALY and VYPPL  

 

These are indicators of the impact of mortality or disability in a population or population group, 

and may assist in decisions on priorities in the allocation of resources and the planning of 

intervention programs to deal with specific diseases, disease groups, or risk factors (World Health 

Organization 2014). 

 

YPLL, which requires entry of the number of deaths at each age, expresses this impact in terms of 

the number of years of potential life lost. For simplicity, its calculation is based on a standard life 

expectancy (set at 75 years by default), without consideration of the changes of life expectancy 

with age. The difference between age at death and this life expectancy is taken as the number of 

years of life lost because of the given cause. The total YPLL and the mean YPLL per decedent are 

reported. 

 

VYPLL (valued years of potential life lost) is similar, but gives different weights to deaths at 

different ages, using an “investment-producer-consumer” model (Gardner and Sanborn 1990). The 

weights are dependent on the ages at which the “working age period” is assumed to commence and 

end (here set at 20 and 65 years respectively). A life expectancy of 75 is assumed; deaths occurring 

after 75 do not enter into the computation. 

 

DALY (disability-adjusted life years) combines YPLL (which measures premature mortality) with a 

measure of life impairment (i.e., the number of healthy life years lost due to disability). It requires 

entry of the number with an onset of disability at each age, and of deaths of non-disabled subjects. 

For each non-disabled decedent, the module uses the difference between age at death and the life 

expectancy; and for each disabled subject, it uses the difference between age at onset of disability 

and the life expectancy. DALY is the sum of these numbers. The program reports the total DALY 

and the mean DALY per subject. The calculation assumes 100% permanent disability, and is 

appropriate only if the disabilities are severe and irreversible. For simplicity, no weighting by the 

type or degree of disability or by age, or other manipulation, is used, which means that the result is 

not comparable with DALYs that use such manipulations. 

 

VYPPL (valued years of potential productivity lost) is a measure suggested by Linn and Sheps 

(1993). It estimates the effect of permanent disability (of any specified degree) on productivity. 

Using the “investment-producer-consumer” model described by Gardner and Sanborn 1990) in 

measuring VYPLL, it takes account of whether the disability commenced before, during, or after the 

“working age period” of life, and it balances the economic benefits expected during this period 

against the economic costs occurring before and after this period. It requires entry of the number of 

onsets of disability at each age, the assumed mean degree of disability, and assumptions concerning 

the age of economic independence (i.e., the start of the working period and the age of retirement), 

and life expectancy. 

 

 



                                                                 F.  SURVIVAL DATA 

52 

 

 
METHODS 

 
Median survival time  
 
If survival times are entered and none are censored, their median is reported;  an exact confidence interval (as close to 

95% as possible) is displayed  if there are 6 to 100 subjects, and an approximate 95% interval is computed if there are 

more than 100 subjects (Campbell and Gardner 2000: 37-39 and Table 18.4). 

 

If there is censoring or if life table data are entered, the median is estimated by the longest observed survival time for 

which the cumulative survival probability is 50% or less.  If the survival probability is not precisely 50% at the reported 

median survival time, an alternative median is also reported, based on linear interpolation between the times straddling 

the 50% mark (Selvin 2004: 396).  The standard error and 95% confidence intervals of the median are computed by the 

formulae provided by Machin and Gardner (2000: 97-98), based on the survival times at which the survival 

probabilities reach or cross the 45% and 55% levels, or if these probabilities are equal, the 40% and 60% levels.  The 

effective sample size required for the calculation is the total sample size minus the number censored before the median 

survival time (Machin and Gardner (2000: 94).  If the sample is small, the results are unreliable  
 

Mean survival time 
 

If survival times are entered  and none are censored, the mean and its confidence intervals are computed in the usual 

way.  Otherwise, a nonparametric estimate of the mean  (not assuming an exponential distribution of survival times) is 

computed, based on formula 11.29 of  2004: 393; its standard error is computed by formula 11.31, and used for interval 

estimation; for this  purpose  the longest survival time is treated as uncensored, even if it is censored      

 

A mean/median survival time is also computed, based on the assumption that the distribution is exponential (Selvin 

2004: 388; Altman 1991: 385).  Its standard error is computed by Selvin’s formula ( 2004: 389). 

 
Incidence rate of the event 
 

The reciprocals of the mean survival time (or the estimate of the mean survival time) and its confidence limits are used 

as estimates of the average rate of events and its confidence limits.   

 

Cumulative survival proportions 
 

If survival times are entered, cumulative survival proportions are estimated by the Kaplan-Meier technique (Kaplan and 

Meier 1958; Armitage et al. 2002: 575-576; Machin and Gardner 2000: 94-96).  Standard errors are calculated by 

Greenwood's formula (Altman 1991; p. 379), and used to estimate 95% confidence intervals (Altman 1991; p. 378).   

If life table data are entered, the program uses the basic formulae provided by (among others) Rothman and Boice 

(1982: 39).  The standard error of the cumulative probability of survival is calculated by formula 17.7 of Armitage et 
al. (2002) and confidence intervals by formulae provided by Rothman (1978). 

 

Withdrawal bias 
 

The extreme estimates of the cumulative survival proportions, assuming maximal bias (first in one direction and then 

the other) of withdrawn subjects., are based on the alternative assumptions that withdrawn subjects (except those with 

survival times exceeding the longest uncensored survival time) all incurred the event (low bound), and that all 

withdrawn subjects remained under observation and were free of the event (high bound).    

 

The formulae for the extreme probability of an event at each point (Kaplan-Meier procedure) or in each period (cohort 

life table method) are 

(E + W) / N  

and E / N, 
where E = number of events at this point or during this period 

W = number of withdrawals at this point or during this period 

N = number at risk, including withdrawals. 
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YPLL,  VYPLL,  DALY and VYPPL 

 

YPLL  =  ∑(LE – Ai) . [If LE – Ai < 0, it is taken as 0]. 
where  LE = life expectancy 

 Ai = age at death 

 

VYPLL = ∑ diwi 
where  di = the number of deaths at a specified age (up to the age of 75) 

       wi = an age-specific "potential loss" weight. 

Use is made of the weights listed in Table 2 of Gardner and Sanborn (1990), after exclusion of the "Didn't consume" (at 

age 65+) values listed in column 9 of the table, to avoid dependence on age-specific life expectations..     

 

DALY =  ∑(LE – Ai). [If LE – Ai < 0, it is taken as 0]. 
where  LE = life expectancy 

 Ai = age at death if non-disabled, and age at onset of disability if disabled). 

 

VYPPL  

The calculation is based on formulae provided by Linn and Sheps (1993).: 

VYPPL = ∑YIi + ∑YCi - ∑YPi (formula 11) 

If the disability commenced before the age of economic independence, 

  YIi is calculated by formula 8, YPi by formula 9.2, and YCi by formula 10. 

If the disability commenced between the ages of economic independence and retirement,  

 YIi is calculated by formula 8, YPi by formula 9, and YCi by formula 10. 

If the disability commenced after the age of retirement,  

 YIi is calculated by formula 8.2, YPi by formula 9.3, and YCi by formula 13. 
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G.  DIRECT STANDARDIZATION 
 
This module combines rates (or other statistics) in two or more strata of a group or population, 

using standard weights for the various strata, so as to provide a standardized rate (or other statistic) 

for use in comparisons with other groups (using the same weights).  This neutralizes the possible 

confounding effect of differences between the groups in the relative sizes of the strata, e.g. (for age-

standardized rates) in age composition, although it may be less informative than performing a 

separate comparison in each stratum. 

 

The statistics to be standardized include rates, proportions, and means, and differences between 

rates, proportions or means; but not ratio measures (such as rate or risk ratios).  Direct 

standardization is most commonly used for morbidity and mortality rates. 

  

The weights may be proportions, percentages, or absolute numbers (the sizes of the strata in a 

selected standard population, or any other appropriate figures).  To give equal weight to each 

stratum, for example, "1" might be entered for each.  Age standardization is often based on the age 

distribution of the population of a given country at a given time, or of a hypothetical standard 

population. For convenience, the program displays weights based on the age composition of three 

hypothetical standard populations. 

 

For age-standardization, the program can also use age intervals as weights, dispensing with the 

need for a standard population.  For this purpose, the required weights are the numbers of years in 

successive age intervals –for example, a weight of 5 for a 20-24 years stratum, and 10 for a 25-34 

years stratum.  

 

If confidence intervals are not needed, the only entries required are the weights and the values.  The 

computation of confidence intervals requires extra information – standard errors or denominators.  

Numerators (numbers of cases) and denominators can be entered instead of rates or proportions.  

Separate provision is made for the entry of count ("number-of-persons") denominators and person-

time denominators.  In the program instructions the former are termed "denominators". and the 

latter "PT denominators"; the term "rate" refers to a measure with either kind of denominator. 

 

Unless age intervals are used as weights, the standardized value is a weighted average of the values 

entered for the various strata.  The program computes a standard error and confidence intervals.  If 

denominators are entered, the overall crude rate or proportion is also displayed. 

 

If age intervals are used as weights, the standardized rate is the weighted sum of the age-specific 

rates, i.e. the overall or cumulative rate during the age-span covered.  The program also computes 

the risk during this age-span, the approximate standard error of the age-standardized rate, and 

approximate 95% confidence intervals for the rate and for the corresponding risk. 

 

If over eight strata are entered, the display of weights or values may sometimes fall out of 

alignment with the stratum numbers.  This does not affect the computation, but a warning may be 

shown, to avoid confusion. 

 

 



                                                                                                                    G. DIRECT STANDARDIZATION 

55 

 

 

Hypothetical standard populations 
 

Optionally, the program displays tables of standard weights representing the age distributions of 

idealized world, Africa, and European populations.  The world population is a new WHO standard, 

representing the estimated age-structure of the world population in 2000-2025 (Ahmad et al.2001).  

The standard African population is relatively young, and the standard African population is 

relatively old (Waterhouse et al. 1976, Breslow and Day 1987: 54). 

 
STANDARD POPULATIONS 

           
 

The list of standard weights can be truncated at either end (or at both ends) if the study deals with a 

restricted age-span.  If an age-stratum is wider than those shown in the table, the weights in the 

table should be combined: if in the table the 5-9 year and 10-14 year age-groups have weights of 10 

and 9 respectively, the weight for the 5-14 year age-group is 19. In the World standard, the weight 

shown for the age group 85+ is an aggregrate of those for age groups 85-89 (0.44), 90-94 (09.15), 

95-99 (0.04) and 100+ (0.005). 

 

Use of age intervals as weights 
 

This method of age-standardization (Day 1976; Breslow and Day 1980: 49-53; Breslow and Day 

1987: 57-61; Selvin 2004: 382-384; Abramson 1995) is appropriate for incidence and mortality 

rates.  The procedure assumes that the incidence or mortality density is at least approximately 

constant within the age intervals for which specific rates are entered; the narrower these intervals, 

the more valid the results.  

 

The adjusted rate is the sum of the age-specific rates, weighted by the number of years in each age 

interval; in effect, this gives each single year of age the same weight; the procedure may be seen as 

use of a hypothetical standard population in which each single-year age-group has the same size 

(Hill and Benhamou 1995).  The weighted sum of the age-specific rates is the overall or cumulative 

rate for the age-span covered by the data.  It meets the basic purpose of age-standardization, since 

differences observed between the rates calculated in different populations cannot be attributed to 

differences in their age distribution.  The overall rate should be regarded as a rate having a person-

time denominator. 

 

The program also computes the approximate risk during the age-span covered.  This is the 

probability of occurrence (of the disease, death, etc.) for an individual who is at risk during the total 
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age-span (i.e., assuming no deaths of competing causes).  Reservations have been expressed about 

the use of this method of standardization when comparing populations with widely different all-

cause mortality rates (Inskip 2000). 

 

 

METHODS 
 
If rates with person-time denominators are entered, the number of cases (numerator) in each stratum is calculated and 

rounded off to the nearest integer, for use in the computation; this may modify the rate. 

 

Unless age intervals are used as weights (see below), the standardized values are simple weighted averages: 

Standardized proportion = ∑(WiPi) 

Standardized rate = ∑(WiRi) 

Standardized mean (or other statistic) = ∑(WiMi) 
where  Ri = rate in stratum i 

Pi = proportion in stratum i 

Mi = mean (or other statistic) in stratum i  

Wi = weight allotted to stratum i, divided by ∑Wi. 

 
The standard error of a standardized proportion and (if count denominators are entered) of a standardized rate (after 

converting the rates to proportions) is 

√∑[Wi
2
Pi(1 – Pi) / Di if standard errors are not entered 

and √∑(Wi
2
Si

2
) if standard errors are entered 

where  Di = denominator in stratum i 

Si = standard error of the proportion in stratum i 

 
If person-time denominators are entered, the approximate standard error of a standardized rate is computed by a 

formula using the Poisson model (Breslow and Day 1987: 59, formula 2.2):    

√∑(Wi
2
Ci / Di

2)
 

where  Ci = number of cases (numerator – entered or computed – in stratum i. 

 

The standard error of a standardized mean (or other value) is 

√∑(Wi
2
Si

2)
 

where  Si = standard error of the mean (or other value) in stratum i. 

 

The 90%, 95%, and 99% confidence intervals of standardized means, proportions, and rates are computed from the 
standard error in the usual way, using a normal approximation.  For person-time rates, alternative confidence intervals 

(appropriate for small number of events) are computed by a procedure explained by Dobson et al. (1991). 

 

Using age intervals as weights 
 

The age-standardized rate ASR is computed as  ASR = ∑(wiPi) 
where  Ri = rate in stratum i (computed from numerator and denominator if not entered) 

wi = weight (number of years) in stratum i. 

 

Its approximate standard error is computed  using a Poisson model (Breslow and Day 1987: 59, formula 2.2): 

S.E. = √∑(wi
2
Ri / Di

2
) 

and its approximate 95% confidence limits are computed as ASR ± 1.96(S.E.) 
The same formulae are used, whether or not a person-time denominator is entered. 

 

The risk during the age-span under study is derived from the age-standardized rate by the formula 

Risk = 1 - exp(-ASR).  
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H.  COMPUTATION OF  SMR  

OR INDIRECTLY STANDARDIZED RATE 
 

This module performs indirect standardization.  It computes a standardized morbidity or 

mortality ratio (SMR) and (optionally) an indirectly standardized rate, with confidence intervals.  It 

can also be used for other purposes, in studies of occurrences that are assumed to have a Poisson 

distribution. 

 

The SMR is the ratio of observed to expected cases (events); more specifically, it is the ratio of the 

number of observed cases in a study population to the number that would be expected if the rates in 

its various strata were the same as those in the strata of a selected standard (reference) population.  

Use of the SMR permits comparisons in which a possible confounder is controlled by using it as 

the stratifying variable, e.g. by basing the expected number on the rates in the age categories of the 

standard population. 

 

The indirectly standardized rate is a fictional (and usually unnecessary) rate computed by 

multiplying the SMR by the rate in the standard population. 

 

The observed and expected numbers can be either entered or computed by the program.  Instead of 

the observed number, the observed rate and the size of the study population can be entered, or the 

number of cases in each stratum, or the rate and denominator in each stratum.  Instead of the 

expected number, the rate or the number of cases and denominator size in each stratum of the 

standard population can be entered, together with the size of each stratum of the study population.  

If the observations cover y years and annual data are entered for the standard population, a 

correction factor of y must be entered. 

 

The program computes exact and approximate confidence intervals for the SMR and the 

standardized rate, and for the number of cases.  Optionally, it computes alternative confidence 

intervals that take account of random variation of the number of expected cases as well as that of 

observed cases; this may be advisable if the expected numbers are based on rates that were 

measured in small samples of the standard population.  It can also take account of correlation 

between the observed and expected numbers, as occurs when the study population is part of the 

standard population. 

 

The program may also be used in other comparisons of observed and expected numbers of 

occurrences, assuming a Poisson distribution, e.g. in studies of space-time clustering. 

 

It also estimates confidence intervals for an observed number of events (without entry of an 

expected number), e.g. in the instance of a rare disease whose occurrence can be assumed to have a 

Poisson distribution. 

 

The program displays the SMR (the ratio of observed to expected numbers, expressed as a 

percentage), exact and approximate significance tests for the departure of the ratio from 100%, the 

indirectly standardized rate, and 90%, 95%, and 99% confidence intervals for the SMR, for the 

standardized rate, and for the number of events. 
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Indirect standardization 
 

Indirect standardization provides an SMR or a standardized rate for use in comparisons with other 

study populations or groups (using the same weights) with the aim of neutralizing the possible 

confounding effect of differences in composition, e.g. in age distribution.  The essential feature is 

the application to the study population of rates observed in the strata of a standard population, in 

order to determine the expected number of cases.  The selection of strata (age, ethnic group, etc.) 

depends on what possible confounder it is wished to control.  Two or more confounders can be 

controlled simultaneously; for example, by stratifying by both age and ethnic group - this requires a 

known rate in each age-ethnic category of the standard population, and knowledge of the size of 

each age-ethnic category of the study population. 

 

Indirect standardization does not require information on the rate in each stratum of the study 

population.  It is the lack of such information, or its uncertainty because of small sample sizes, that 

often leads to the choice of indirect rather than direct standardization. 

 

The standard (or reference) population should preferably be the population with which it is wished 

to compare the study population (Anderson et al. 1980: 118). If several study populations are to be 

compared, the use of one of them as the standard is unlikely to produce substantially misleading 

results.  Less advisedly, any other population can be used as the standard.  Use is often made of the 

combined study populations, or of a broad population that contains all the study populations that it 

is wished to compare with one another.  The SMR in the standard population is of course 100%. 

 
Confidence intervals for the SMR and standardized rate 
 

Confidence intervals for the SMR are computed on the assumption that the number of events is 

subject to random variation in accordance with a Poisson distribution (appropriate if the event is 

rare), whereas the expected number of events is an error-free constant.  The estimates may be 

inaccurate if the denominators are very small.  Exact Fisher's and mid-P confidence intervals are 

computed if there are 70 or fewer events, and approximate Fisher's confidence intervals in other 

instances.  Cohen and Yang (1994) point out that, unlike the conservative Fisher's intervals, the 

narrower mid-P intervals do not guarantee the nominal confidence level in all instances, but these 

authors suggest that the discrepancies are of little practical importance. 

 

The program can also estimate alternative confidence intervals that take account of random 

variation of the number of expected cases (as well as of observed cases); this may be advisable if 

the expected numbers are based on rates that were measured in small samples of the standard 

population. The procedure is based on the normal (not the Poisson) distribution, using Fieller's 

theorem for obtaining confidence limits for the ratio of two normal variables).  The confidence 

intervals are wider than those computed by the Poisson method.  They are approximate, and the 

method may be very inexact or unworkable if numbers are very small.  As suggested by Silcocks 

(1994), the procedure is offered only if both the observed and expected numbers are 10 or more. 

 

The program also provides an extension of the Fieller-based procedure, adjusting the confidence 

intervals to allow for the effect of the correlation between observed and expected numbers that 

occurs when the study population is part of the standard population.  This may be important if the 

study population group forms a large proportion of the standard population.  The adjustment, which 

makes the confidence intervals narrower, requires information, for each stratum, on the number of 

observed events and the number of individuals in each population.  The program displays the 
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adjustment factor, which is the weighted percentage of the standard population that is in the study 

population (using the numbers of observed cases in the strata as weights). 

 

If a standardized rate is computed, its confidence intervals are calculated by multiplying the 

confidence limits of the SMR by the rate in the standard population.    

 

It may be helpful to know that an approximate confidence interval can be computed for the ratio of 

two SMRs or standardized rates (that use the same standard) by the formula  

C.I. = AL.E2  / (1 - AL)E1 to AU.E2 / (1 - AU)E1     (Morris and Gardner 2000): 

where  AL and AU are the lower and upper confidence limits (which can be calculated by Option A 

of this program) of the proportion O1 / (O1 + O2); 

O1 and O2 are the observed numbers of events in populations 1 and 2 respectively; 

E1 and E2 are the expected numbers of events in populations 1 and 2 respectively. 

For a significance test, z = |SMR1 – SMR2| / √(SE1
2 
+ SE2

2
). 

 

Other comparisons of observed and expected numbers of occurrences 
 

The program can also be used for other purposes, in studies that compare observed and expected 

numbers of occurrences that are assumed to have a Poisson distribution, the expected number being 

based either on theoretical considerations or on empirical observations. 

 

It could be used, for example, for a simple test of space-time clustering (Knox 1964; Selvin 2004: 

138-143) by defining ‘closeness in space’ and ‘closeness in time of occurrence’, and then 

classifying every possible pair of observations as close in both space and time, or not so.  If there 

are n cases the number of possible pairs (N) is n(n - 1) / 2.  The observed and expected numbers of 

pairs that are close in both time and space are then entered in the program; if S pairs are close in 

space and T pairs are close in time, the expected number (under the null hypothesis) is ST / N. 

 

In viewing the results of such analyses, the SMR, divided by 100, would be read as "the ratio of 

observed to expected numbers". 

 

Confidence intervals are computed on the assumption that the number of events is subject to 

random variation in accordance with a Poisson distribution (appropriate if the event is rare), 

whereas the expected number of events is an error-free constant.  The estimates may be inaccurate 

if the denominators are very small.  Exact Fisher's and mid-P confidence intervals are estimated if 

there are 70 or fewer events, and approximate Fisher's confidence intervals in other instances.  

Cohen and Yang (1994) point out that, unlike the conservative Fisher's intervals, the narrower mid-

P intervals do not guarantee the nominal confidence level in all instances, but these authors suggest 

that the discrepancies are of little practical importance. 

 

Confidence intervals for an observed number of events 
 

The program can estimate confidence intervals for an observed number of events (without entry of 

an expected number), e.g. in the instance of a rare disease whose occurrence can be assumed to 

have a Poisson distribution.  Exact Fisher's and mid-P confidence intervals are estimated if there are 

70 or fewer events, and approximate Fisher's confidence intervals in other instances.  
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Significance tests 
 

One-tailed tests are done for the significance of the SMR's departure from 100%, or the 

observed:expected ratio's departure from unity (displayed as the departure of the SMR from 100%), 

or the standardized rate's departure from the rate in the standard population.  If the observed and 

expected numbers of events are 88 or less, exact Fisher's and mid-P probabilities are shown; 

otherwise a large-sample test is used.  Fisher's P expresses the probability of occurrence, under the 

null hypothesis, of the observed or a more extreme number of events, and the mid-P value 

expresses the probability of a more extreme number plus half the probability of the observed 

number.  The one-tailed P-values are doubled to provide two-tailed P-values. 

 

METHODS 
 

If observed numbers are calculated from rates, they are rounded off to the nearest integer.  The total may diverge from 

the true number if the rates were rounded off.  The expected number is multiplied by the correction factor (if entered). 

 

Standard error 
 
The standard error of the SMR (the ratio of observed to expected numbers of events) is calculated as 

 S.E. = √∑{Fi[1 - (Fi / Ni)]} / ∑(PiNi)  if separate values of Fi are entered, and 

S.E. = √∑Fi / ∑(PiNi)  if separate values of Fi are not entered data are not entered  

where  Fi = number of events in stratum i of study population 

 Ni = size of sratum i of study poulation 

 Pi = rate in stratum i of standard population. 
 

Significance tests 
 

Formulae for the computation of approximate and exact Fisher and mid-P probabilities are provided by Rothman and 
Boice (1982: 29: formulae 9-12).  Rothman and Boice's formula 19 is used for the large-sample test. 

 

Confidence intervals 
 

Exact Fisher's and mid-P confidence intervals for the SMR, the standardized rate, and the number of events, based on 

the Poisson distribution, are displayed if there are 70 or fewer events, using tabulated values from Pearson and Hartley 

(1966) and Cohen and Yang (1994).  In other instances, or if an exact confidence interval cannot be computed, Fisher's 

confidence interval is computed by a large-sample method (Rothman and Boice 1982: 29: formulae 17-18).  

Confidence intervals for an observed number of cases are based on a Poisson distribution with mean and variance of 1.   

 

The Fieller-based procedure is explained by Silcocks (1994).  The confidence limits for the observed:expected ratio,  

when the expected number is subject to random variation, are the two solutions for x of the quadratic equation: 

e(e - c)x
2
 - (2oe - 2oqc)x + o(o - c) = 0  

where o and e = observed and expected events     

c = chi-square (2.7055 for 90%, 3.84146 for 95%, or 6.6349 for 99% CI).     

q = 0 if the effect of correlation between observed and expected numbers is not taken into account   

q = ∑(rn / N)  / ∑r if the effect of correlation between observed and expected numbers is taken into account     

r = observed events in a specific stratum    
n = size of that stratum in index group    

N = size of that stratum in standard population.  

 

For an observed number of 0, the lower confidence limit is zero and the exact upper confidence limit is 

-2.302585093(log[a])    (Diem 1970: 137, formula 129). 

where  a = 0.05 for the 90% interval, 0.025 for the 95% interval, and  0.005 for the 99% interval. 
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I.  ESTIMATION OF NUMBER OF CASES, USING CAPTURE-

RECAPTURE METHOD 
 

This procedure is appropriate in an epidemiological study that aims to estimate the number of 

individuals with a defined characteristic (usually the number of cases of a disease) in a population, 

on the basis of incomplete overlapping lists derived from two to four sources. 

 

The individuals in each list must be identifiable, so that it is possible to determine in which lists 

they appear.  The numbers of cases appearing solely in each of the lists, and in each combination of 

lists, must be entered.   

 

The program then displays the estimated total number of cases, including those not appearing in 

any list, together with approximate 95% confidence intervals.  Optionally, the total population size 

may be entered, to permit display of the results in “rate” format. 

 

If there are two sources of data, it is assumed that the sources are independent of one another; that 

is, that the probability of appearing in one list is not increased or decreased by inclusion in the other 

list.  The estimated total number of cases is an underestimate if the two sources are positively 

correlated, and an overestimate if they are negatively correlated.  Two alternative confidence 

intervals are displayed, one based on the standard error of the estimator, and one on the Poisson 

distribution.  Following a recommendation by Seber (1982), the latter interval may be preferred if 

the overlap between the lists is small (as defined below), and the former in other instances. 

 

If there are three or four sources of data, the program provides two estimators of the total number 

of cases, with their confidence intervals.  One of these estimators assumes that the sources are 

independent, and the other does not.  .The program also displays coefficients of covariation that 

indicate the direction and degree of the dependencies between lists. 

 

For each list, percent ascertained (exhaustiveness) is reported, with its  95% confidence interval.  

This is the number of cases that appear in the list, expressed as a percentage of the estimated total 

number of cases. 

 

 
Estimated total number of cases 
 

For two sources of data, the program uses Chapman's low-bias modification of Peterson's estimator 

of the total number of cases.  Two sets of confidence intervals are displayed – one based on the 

standard error, and a Poisson confidence interval – with a recommendation as to which is to be 

preferred (see below).  The estimated total may be an underestimate if the two sources are 

positively correlated, and an overestimate if they are negatively correlated. 

 

For three or four sources of data, the program uses the sample-coverage approach described by 

Chao and her colleagues.  Two estimators of the total number of cases are computed, with their 

confidence intervals.  One is to be preferred if the sources are independent, and the other if there is 

dependence. 
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Coefficients of covariation 
 

The coefficients of covariation indicate the direction of the dependencies between lists.   

 

To simplify their interpretation, “standardized” coefficients that can range from  -1 to +1 are also 

presented.  These provide a guide to the degree as well as the direction of the dependencies 

between lists.. 

 

Percent ascertained (exhaustiveness) 
 

Percent ascertained (exhaustiveness) is the percentage of the estimated total number of cases that 

appear in a specific list.  As an estimate of its 95% confidence limits, the number of listed cases is 

expressed as a percentage of the upper and lower confidence limits of the total.  The percent 

ascertained is calculated separately for each estimator of the total number of cases, if two are 

displayed. 

 

If there are two sources of data, the percent ascertained may be an overestimate if the sources are 

positively correlated, and an underestimate if they are negatively correlated. 

 

The percent ascertained may be interpreted as sensitivity (the percentage of all ascertainable true 

cases who are included in the list) if all listed cases are true cases or if all lists have the same 

positive predictive value. 

 

 

METHODS 
 
Estimated total number of cases 
 

If there are two sources of data, the program uses Chapman's low-bias modification (1948, 1951) of Peterson's 

estimator of the total number of cases(N).  The formula is: 

N = [(n1 + 1)(n2 + 1) / (m + 1)] - 1 
and the formula for its S.E. is 

SE = √{[(n1 + 1)(n2 + 1)(n1 - m)(n2 - m)] / [(m + 1)2(m + 2)]} 
where n1 and n2 are the numbers of cases in lists 1 and 2 respectively. 

m is the number of cases appearing in both list 1 and list 2. 

Two alternative confidence intervals are displayed, one based on the standard error of the estimator, and one on the 

Poisson distribution.  Following a recommendation by Seber (1982), the latter interval may be preferred if the overlap 

between the lists is small (if m < 50)  and, as well, m is less than 0.1(n1) or less than  0.1(n2), and the former interval in 

other instances.  

The 95% confidence interval based on the standard error is computed by a log transformation method (Chao 1987, 

formula 11): 
[F + (N - F)/C] to [F + (N - F)C]. 

where F = n1 + n2 - m    

C = exp{1.96 * √[log(1 + SE2 / (N - F)2)]}. 

For numbers over 100, the Poisson confidence interval is an approximate interval computed by the formulae provided 

by Rothman and Boice (1982: 29: formulae 17 and 18).  For smaller numbers, exact Fisher's intervals are provided, 

using tabulated values (Altman et al. 2000: Table 18.3)).  

 

If there are three or four sources of data, the program uses the sample-coverage approach to capture-recapture analysis 

proposed by Chao and Tsay (1998) and described in detail by Chao et al. (2001). 

 
For three sources, formula 10 in the latter paper provides an estimator for independent sources, and formulae 12 and 13 

provide estimators for dependent sources.  The program uses formula 12 if the sample size is adequate, and formula 13  
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if it is not.  For this purpose, a sample coverage of 55% or more is regarded as adequate, as suggested by simulation 

studies by Chao et al. (1996).  The sample coverage is estimated by computing the proportion of cases (in each list 

separately) that also appear in one or more other lists, and averaging these proportions (formula 7).  Formula 13 

provides a “one-step” estimator that can be regarded as a lower bound for positively dependent samples, and an upper 

bound for negatively dependent samples.  Since simple methods of accurately computing standard errors are not 

available for these estimators, approximate confidence intervals are displayed, arrived at by treating the estimated 
number of cases as a Poisson variate (using a formula or exact intervals: see above); this is appropriate if the event (the 

disease) can be regarded as relatively rare.   

 

If there are four sources of data, the computation is similar, using formulae 14 to 17 (Chao et al. 2001). 

 

Coefficients of covariation 
 

Coefficients of covariation, based on whichever estimator (Chao et al.: 2001: formula 12 or formula 13) is displayed, 

are computed by formula 13a.  

 

“Standardized” coefficients that can range from  -1 to +1 are also displayed.  For this purpose, the negative coefficients 

remain unchanged, since their lower bound is -1.  The positive coefficients are divided by the upper bound for the pair 
of sources under consideration; this upper bound is based on the arbitrary assumption that whenever a case is found in 

only one of the two lists, it would be found in the other one also.  The “standardized” coefficients may be easier to 

interpret, although with the caveat (Chao, personal communication) that since this upper bound depends on the data, it 

cannot serve as a standard basis from a statistical point of view; the coefficients can become extremely large, without a 

universal bound. 

 

Percent ascertained (exhaustiveness) 
 

Percent ascertained (exhaustiveness) is the percentage of the estimated total number of cases that appear in a specific 

list.  If there are two sources of data, the estimation of its confidence interval uses the S.E.-based estimator of the total, 

and if there are three or four sources of data its confidence interval is computed separately for each estimator of the 
total. 
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J1.  ESTIMATION OF PREVALENCE, USING EQUAL-SIZED 
CLUSTERS 

 
This module estimates the prevalence of a disease or other attribute from observations in a cluster 

sample with equal-sized clusters.   

       
The clusters may be groups of subjects or groups of two or more observations made on each 

subject.  The size of the clusters, and the numbers with the attribute under study (the number of 

"hits" in each cluster) must be entered.  Clusters may be entered separately, or clusters with similar 

findings can be entered together.  Optionally, the size of the population to which the study refers 

can be entered, to permit application of a finite population correction that reduces the width of the 

confidence intervals; this is unnecessary if the sample includes less than 5% of the population 

(Cochran 1977: 66: 25). 

 
The program displays the estimated prevalence, with 90%, 95%, and 99% confidence intervals 

computed by four methods, those of Cochran, Lui, Fleiss et al., and Paul and Zaihra.  The standard 

error and design effect (see below) based on each procedure is reported.  The rate of homogeneity, 

or intraclass correlation coefficient, which can range up to 1, is also displayed; this is a measure of 

the similarity of the elements in a cluster. 

 
 

 

The clusters in a cluster sample may be randomly-selected groups of subjects, or groups of two or 

more observations made on the same subject at different times or at different body sites, e.g. in 

each eye or on various tooth surfaces. 
 

The procedure may be used for a random or near-random sample of clusters selected in more than 

one stage, e.g. clusters of households selected randomly from communities chosen by a systematic 

procedure in which the probability of selection is proportional to the community's size, as in EPI 

(Expanded Program on Immunization) surveys (Bennett et al. 1991). 
 

The prevalence of a history of the occurrence of a given disease in the members of a cluster sample 

in a given period can, if the information is sufficiently valid, be used as an indication of the 

incidence during that period (Rothenberg et al. 1985). 
 

The program displays the estimated prevalence (as a proportion, or per 1,000, etc.) with 90%, 95%, 

and 99% confidence intervals computed by four methods, those of Cochran, Lui, Fleiss et al., and 

Paul and Zaihra, and the standard error and design effect based on each procedure.  The design 

effect, or variance inflation factor, is the ratio of the variance to what the variance would be if this 

were a simple random sample, and it provides an indication of the loss of precision due to the use 

of a cluster sample.  The rate of homogeneity, or intraclass correlation coefficient, which can range 

up to 1, is also displayed; this is a measure of the similarity of the elements in a cluster.  In unusual 

circumstances there may be anomalous results; for example when many of the clusters contain a 

single observation, the rate of homogeneity may be negative, and the design effect less than 1.   
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METHODS 
 

The point estimate of the prevalence is the ratio of the total number with the attribute under study to the combined 

number in the clusters. 

 

Using Cochran's procedure, the variance of the prevalence is computed by formula 3.34 of Cochran (1977: 66); since 

the clusters are equal in size, this is equivalent to formula 3.30.  If the size of the population is entered, a finite 

population correction, 1 – f , is applied in these formulae;  f is the ratio of the sample size to the size of the population.  

If f = 1, the variance is zero (Armitage et al. 2002: 96). 

 

The 90%, 95%, and 99% confidence limits are computed as 

p ± t(SE) 
where  p = prevalence 

      t = the two-tailed critical value of Student's t at alpha = 0.1, 0.05, or 0.01, with (C-1) degrees of freedom. 

       C = number of clusters 

 SE = standard error 

       

Lui's procedure uses a logarithmic transformation for estimating confidence intervals (Lui 2004: formula 1.12).  If the 

size of the population is entered, the variance used in this formula is multiplied by the finite population correction (see 

above), to avoid unduly conservative estimates.  If the sample encompasses the whole population, the variance is zero 

(Armitage et al. 2002: 96).  The standard error is derived from Lui's formula 1.8. 
 

In the procedure described by Fleiss et al. (2003: 441-444: formulae 15.2 and 15.3), the intraclass correlation 

coefficient is estimated by formula 15.4 .  If the size of the population is entered, the program multiplies the variance 

(formula 15.3) by the finite population correction (see above), to avoid unduly conservative estimates.   If the sample 

encompasses the whole population, the variance is zero (Armitage et al. 2002: 96). 

 

The interval estimation described by Paul and Zaihra (2008) in their method C2 uses their variance formula 4, after 

adjusting the  estimated probability of ‘yes’ observations by adding 0.5 to the numerator and 1 to the denominator, as 

explained at the foot of page 4210. 

       

For each procedure, the program reports the standard error (the square root of the variance calculated by that procedure) 

and the design effect.  The design effect is the ratio of the variance to the variance of a simple random sample of the  
same size (Cochran 1977: formula 3.11, p. 52), which is computed as  

[(N - n) / N] [p(1 - p) / (n - 1)]  if N was entered, or  

p (1 - p) / (n - 1)  if N was not entered 

where N = size of population 
p = proportion with the attribute under study 

n = size of sample 

In the Fleiss procedure, n is used in the denominators, not (n – 1). 

If n = N, the variance is zero (Armitage et al. 2002: 96), and the design effect is not computed.        

 

The rate of homogeneity (intraclass correlation coefficient) is computed from the one-way ANOVA components MSB 

and  MSW (the between-cluster and within-cluster mean squares) by the formula (Ridout et al. 1999) 

(MSB-MSW) / [(MSB + MSW)*(M - 1)] 
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J2.  ESTIMATION OF PREVALENCE, USING DIFFERENTLY-

SIZED CLUSTERS 
 

This module estimates the prevalence of a disease or other attribute from observations in a cluster 

sample with differently-sized clusters.   

     
The clusters may be groups of subjects or groups of two or more observations made on each 

subject.  The sizes of the clusters, and the numbers with the attribute under study (the number of 

"hits" in each cluster) must be entered.  Clusters may be entered separately, or clusters with similar 

findings can be entered together.  Optionally, the size of the population to which the study refers 

can be entered, to permit application of a finite population correction that reduces the width of the 

confidence intervals; this is unnecessary if the sample includes less than 5% of the population 

(Cochran 1977: 66: 25). 

 
The program displays the estimated prevalence, with 90%, 95%, and 99% confidence intervals 

computed by four methods, those of Cochran, Lui,  Fleiss et al, and Paul and Zaihra. The standard 

error and design effect (see below) based on each procedure is reported.  The rate of homogeneity, 

or intraclass correlation coefficient, which can range up to 1, is also displayed; this is a measure of 

the similarity of the elements in a cluster. 

 
 

 

The clusters in a cluster sample may be randomly-selected groups of subjects, or groups of two or 

more observations made on the same subject at different times or at different body sites, e.g. in 

each eye or on various tooth surfaces. 
 

The procedure may be used for a random or near-random sample of clusters selected in more than 

one stage. 
 

The prevalence of a history of the occurrence of a given disease in the members of a cluster sample 

in a given period can, if the information is sufficiently valid, be used as an indication of the 

incidence during that period (Rothenberg et al. 1985). 
 

The program displays the estimated prevalence (as a proportion, or per 1,000, etc.) with 90%, 95%, 

and 99% confidence intervals computed by four methods, those of Cochran, Lui, Fleiss et al., and 

Paul and Zaihra, and the standard error and design effect based on each procedure.  The design 

effect, or variance inflation factor, is the ratio of the variance to what the variance would be if this 

were a simple random sample, and it provides an indication of the loss of precision due to the use 

of a cluster sample.  The rate of homogeneity, or intraclass correlation coefficient, which can range 

up to 1, is also displayed; this is a measure of the similarity of the elements in a cluster.  In unusual 

circumstances there may be anomalous results; for example when many of the clusters contain a 

single observation, the rate of homogeneity may be negative, and the design effect less than 1. The 

mean cluster size is displayed, together with the adjusted mean used in calculating the rate of 

homogeneity. 
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METHODS 
 

The point estimate of the prevalence is the ratio of the total number with the attribute under study to the combined 

number in the clusters. 

 

Using Cochran's procedure, the variance of the prevalence is computed by formula 3.34 of Cochran (1977: 66); if the 

clusters are equal in size, this is equivalent to formula 3.30.  If the size of the population is entered, a finite population 

correction, 1 – f , is applied in these formulae;  f is the ratio of the sample size to the size of the population.  If f = 1, 

the variance is zero (Armitage et al. 2002: 96). 

 

The 90%, 95%, and 99% confidence limits are computed as 

p ± t(SE) 
where  p = prevalence 

      t = the two-tailed critical value of Student's t at alpha = 0.1, 0.05, or 0.01, with (C-1) degrees of freedom. 

       C = number of clusters 

 SE = standard error 

       

Lui's procedure uses a logarithmic transformation for estimating confidence intervals (Lui 2004: formula 1.12).  If the 

size of the population is entered, the variance used in this formula is multiplied by the finite population correction (see 

above), to avoid unduly conservative estimates.  If the sample encompasses the whole population, the variance is zero 

(Armitage et al. 2002: 96).  The standard error is derived from Lui's formula 1.8. 
 

In the procedure described by Fleiss et al. (2003: 441-444: formulae 15.2 and 15.3), the intraclass correlation 

coefficient is estimated by formula 15.4 .  If the size of the population is entered, the program multiplies the variance 

(formula 15.3) by the finite population correction (see above), to avoid unduly conservative estimates.   If the sample 

encompasses the whole population, the variance is zero (Armitage et al. 2002: 96). 

       

The interval estimation described by Paul and Zaihra (2008) in their method C2 uses their variance formula 4, after 

adjusting the  estimated probability of ‘yes’ observations by adding 0.5 to the numerator and 1 to the denominator, as 

explained at the foot of page 4210. 

 

For each procedure, the program reports the standard error (the square root of the variance calculated by that procedure) 

and the design effect.  The design effect is the ratio of the variance to the variance of a simple random sample of the  
same size (Cochran 1977: formula 3.11, p. 52), which is computed as  

[(N - n) / N] [p(1 - p) / (n - 1)]  if N was entered, or  

p (1 - p) / (n - 1)  if N was not entered 

where N = size of population 
p = proportion with the attribute under study 

n = size of sample 

In the Fleiss procedure, n is used in the denominators, not (n – 1). 

If n = N, the variance is zero (Armitage et al. 2002: 96), and the design effect is not computed.        

 

The rate of homogeneity (intraclass correlation coefficient) is computed from the one-way ANOVA components MSB 

and  MSW (the between-cluster and within-cluster mean squares) by the formula (Ridout et al. 1999) 

(MSB-MSW) / [MSB + MSW*(M-1)] 
where M is an adjusted mean cluster size, computed for this purpose by the formula for n0 in Ridout et al. (1999). 
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J3.  ESTIMATION OF PREVALENCE, USING A STRATIFIED 

SAMPLE 
 

This module estimates the prevalence of a disease or other attribute from observations in a 

stratified sample.   

       
The prevalence in the total population from which the samples were drawn is estimated, with its 

standard error and 90%, 95% and 99% confidence intervals.  For each stratum, the required entries 

are the size of the sample, the prevalence, and the size of the stratum in the population.  The use of 

approximate population data (e.g., based on an old census) will usually have little effect on the 

results.  If standard errors for the prevalences in the samples cannot be computed from the above 

data (e.g. if cluster samples were used), standard errors should be entered. 

 
 

The program estimates the prevalence in the total population from which the samples were drawn 

(with 90%. 95%, and 99% confidence intervals), using weights based on the relative sizes of the 

strata in the total population.   Both the prevalence per 1000 (etc.) and the estimated total number of 

cases are displayed. 
 

If standard errors (per 1000 etc.) are entered, these (rather than the prevalence data and numbers in 

the strata) are used as the basis for the computation of a standard error and confidence intervals for 

the overall prevalence. 

 

METHODS 
 

The overall prevalence (the prevalence proportion in the population) is ∑(Nipi / N) 
where  Ni = number in stratum i of the population 

pi = prevalence in stratum i 

       N = ∑Ni 

      

If standard errors are not entered, the variance of the overall prevalence is computed by formula 5.53 of Cochran 

(1977), and its square root is reported as the standard error. The last term in this formula is replaced by phqh / (nh - 1), 

as recommended by Cochran (p. 108), except in the improbable instance that nh (the sample size in stratum h,)  is 1, 

when phqh / nh is used. 

 

If standard errors are entered for the strata, the standard error of the overall prevalence is computed as √∑(Wi
2
si

2
) 

where  Wi = Ni  /  N 

       si = standard error in stratum i 

       

Confidence intervals for the overall prevalence are estimated by the formula        P ± zS 
where  P = overall prevalence 

       S = standard error of overall prevalence 

       z = 1.6449, 1.96, or 2.5758 for 90%, 95% and 99% intervals, respectively. 

 

The overall prevalence proportion and its confidence limits are multiplied by the total population size to provide 

estimates of the overall number of cases; these numbers are rounded off to the nearest integer. 
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J4.  ESTIMATION OF PREVALENCE, USING POOLED 

SAMPLES 
 

This module estimates the prevalence of a disease or other attribute from observations in pooled 

samples, using the results of tests (e.g. for the presence of an infective agent)  conducted on 

samples containing material from a number of individuals.  Prevalence is estimated at an individual 

level, with its 90%, 95%, and 99% confidence intervals. A number of different methods are used, 

depending on whether or not the sensitivity and specificity of the test are taken into account, 

whether or not sensitivity and specificity are assumed to be known for certain, and whether or not 

the number of individuals per pool is constant. 

  
 

 
Pooled samples are aggregations of  individual samples. A pooled sample may contain (for 

example)  meat or other material from different animals, or a number of eggs or fish, etc.  Apparent 

prevalence at an individual level is estimated from the number and size of the pools, and the test 

result for each pool. The estimates of prevalence are upwardly biased, generally negligibly so if the 

number of pools exceeds 30.  Bias is less if there is a low true prevalence (less than 10%), a large 

number of pools, and a small number of samples per pool; clustering may result in substantial bias. 

Confidence intervals for prevalence are generally narrower if there are more pools or if the pools 

are smaller, and they are much wider if the prevalence is high. It is assumed that simple random 

sampling was used (otherwise, the estimated confidence  intervals are too narrow), and that the 

sensitivity of the test for a pool is about the same as for individual samples  (Cowling et al. 1999, 

AusVet Animal Health Services 2004, Williams and Moffitt 2001). 

 

The sensitivity and specificity of the test are assumed to be 100%, unless other values are entered. 

Sensitivity and specificity are taken as fixed (i.e., known for certain), unless the sizes of the 

samples in which they were determined are also entered. 

 

If all the pools are of the same size, and the test is assumed to be perfect, the program provides a 

maximum-likelihood estimate of individual-level prevalence and its asymptotic confidence 

intervals (based on large-sample theory; Method 2 of Cowling et al.) and exact (maximum-

likelihood estimate) confidence intervals that are computed by two methods (Method 3 of Cowling 

et al., and the method used by Williams and Moffitt 2001).  The exact intervals are preferable if the 

sample size is small. 

 

If the pools are of the same size, and sensitivity or specificity is less than 100%, the program 

provides asymptotic and exact confidence intervals (Methods 4 and 5, respectively, of Cowling et 

al). But if the sizes of the samples in which sensitivity and specificity were determined are entered,  

asymptotic confidence intervals are estimated by Method 6 of Cowling et al. 

 

If the pools are of different sizes, confidence intervals are estimated by the method used by 

Williams and Moffitt 2001), which assumes 100% sensitivity and specificity.  

 

If all tests are positive (whether the pool size varies or not), the program reports the minimal 

prevalence, assuming that there is only one positive sample in each pool (Method 1 of Cowling et 

al. 1999); the maximal prevalence is of course 100%. 
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If all the pools are of the same size, which is when bias is most marked (Hepworth and Watson 

2009), a bias-corrected estimate of prevalence is computed." 

 

In a study of an infective agent in specimens from sheep, comparisons with individual sampling 

showed that Method 3 of Cowling et al. and the Williams-Moffitt method provided accurate and 

reasonable estimates of true prevalence in all instances, although (because they do not allow for 

imperfection of the tests) they were found to underestimate the true prevalence (Toribio and 

Sergeant 2007). 
 

METHODS 
 
The methods used for estimating individual-level point prevalence and confidence intervals are described by Cowling 

et al. (1999) (Methods 1 to 6) and  Williams and Moffitt (2001).   

 

In Methods 2, 4,and 6, confidence limits are based on a normal approximation; if  the computed lower confidence limit 

is below zero  it is changed to zero. 

 

In Methods 3 and 5, exact confidence intervals are obtained by assuming a binomial distribution for the number of 

positive pools, using the F distribution (Fleiss et al. 2003, pp 25-26). 

 

Iterative methods are used in the Williams-Moffitt (maximum-likelihood) method; in occasional instances the upper 

confidence limit estimated by this method presents a computational difficulty, and it is then estimated as exp[ln(P) * 

2 – ln(L)], where P = prevalence and L = lower confidence limit. Such estimates are marked with asterisks. In other 

instances, the estimation is halted because of computational difficulties. 

 

Methods 4 and 5 are used only if the proportion of positive pools is greater than the assumed false positive rate, and 

less than or equal to the assumed sensitivity.  If they are inappropriate for estimating a specific confidence limit , the 

limit is replaced by “??” in the output. 

 

The bias-corrected estimate of prevalence uses the method proposed by Burrows (1987) and recommended by 

Hepworth and Watson (2009: formula 5). 
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J5. CALCULATION OF DESIGN EFFECT FROM 
INTRACLUSTER CORRELATION COEFFICIENT 

 

This module calculates the design effect for a cluster study from the known or assumed intracluster 

correlation coefficient. 

 

 

In a study based on a cluster sample, the presence of similarities between members of the same 

cluster reduces the study's effectiveness as compared with a study based on a simple random 

sample. The intracluster correlation coefficient (or "rate of homogeneity") measures this similarity, 

which results in an increased variance and hence an increased sample size requirement. The design 

effect is a measure of this increase.  

 

The program requires entry of the known or assumed intracluster correlation coefficient, and the 

average size of the clusters. It displays the design effect (DEFF) and its square root (DEFT). DEFT 

expresses the ratio of the cluster study's confidence intervals to those of a study based on a simple 

random sample of the same size. 

 

 

METHOD 
 

The formulae (Shackman 2001) are; 
 DEFF = 1 + ICC(n - 1) 

         DEFT **=  √(DEFF) 

Where n = the average cluster size 
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K.  SAMPLE SIZE 
(TO ESTIMATE PROPORTION/RATE/MEAN, OR FIND CASES) 

 

This module computes the sample size required for estimating a proportion, prevalence rate, or 

mean; it is applicable to simple random samples, stratified random samples, and cluster 

samples.   It also computes the size of the random sample required in case-finding, in order to 

identify a given number of subjects with a given disease or other attribute.  

The data required for estimating a proportion, prevalence rate, or mean include the desired 

confidence level (e.g. 95%) and the acceptable error (i.e., half the total width of the desired 

confidence interval).  The assumed true proportion, rate, or (for a mean) S.D. or coefficient of 

variation, and the acceptable difference, must be entered. The program then computes the sample 

size needed to obtain an estimate with the chosen probability of being within the chosen distance 

from the true value. 

 

If the size of the population from which the sample is to be chosen is entered, a finite population 

correction (Cochran 1977: 24) is made; this reduces the required sample size; it has little effect if 

the sampling fraction is below 5%. 

 

Optionally, the expected percentage of selected subjects expected to be lost because of refusal to 

participate or other reasons can also be entered.  The computed sample size is adjusted by first 

inflating it (if necessary) to allow for losses (which of course does not compensate for possible 

selection bias), and then rounded up to the nearest whole number (which may produce apparent 

small inconsistencies in the results). 

 

In some instances graphs are displayed as well as numerical results. 

 

If a single sample is to be used for several purposes, e.g. for estimating the prevalence of different 

diseases, separate size computations should be done, and the largest sample size selected. 

 

 

Simple random samples 
 

For a random sample to estimate a proportion or prevalence, the assumed true value in the 

population is required; if this cannot be guessed, 0.5 (or 500 per 1,000, etc.) should be entered (this 

is a 'worst-case scenario' that maximizes the sample size).  Two results are displayed.  The first, 

based on the method usually used, assumes that the proportion or prevalence that is entered is 

correct; the second (Fleiss et al. 2003: 34-36) assumes that it is a rough estimate, and caters for a 

range of true proportions or prevalences. 

  

In addition to reporting the sample size appropriate for the specific proportion or rate that was 

entered, the program displays a graph showing the sample sizes required for a range of true 

proportions or rates under the specified conditions (confidence level, acceptable error, and maybe 

percentage of losses and population size).  For proportions, this is a full range, from 0 to 1: 
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For rates, the graph shows the sample sizes required for true values ranging from half to double the 

assumed value, under the specified conditions.  An assumed rate of 20 per 1.000 produced the 

following graph, appropriate for true rates from 10 to 40 per 1000: 

 

 
 

For estimating a mean, the assumed true S.D. or coefficient of variation (the S.D. as a percentage 

of the mean)  in the population is required, together with the acceptable error (which must be 

entered as a percentage of the mean if the coefficient of variation is entered). The computations 

involve large-sample approximations and may underestimate required sample sizes (Kupper and 

Hafner 1989); as pointed out by Kelley (2007), “the confidence interval width is a random variable 

that will fluctuate from sample to sample”, and often has less than the desired width.  A graph 

shows the sample sizes required, under the specified conditions (confidence level, acceptable error, 

and maybe percentage of losses and population size) for a true S.D. ranging from half to double the 

assumed value that was entered:  

 

 
 
If the coefficient of variation and acceptable error are entered, the program computes the required 

sample size, using the conventional formula. It may also report the sample size needed for 99% 

assurance that the required confidence interval will not exceed the required width, as computed by 

the AIEP (accuracy in parameter estimation) approach advocated by Kelley (2007); this is done if 

the requirements fall within the scope of Kelley’s tables (namely: coefficient of variation between 
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5% and 50%, acceptable error between 0.5 and 10%, and confidence level 90%, 95%, or 99%); the 

program reports the sample sizes listed in the  tables, using interpolation where necessary. A graph 

shows (in red) the sample sizes computed by the usual formula for  the specified conditions 

(confidence level, acceptable error, and maybe percentage of losses and population size) for a true 

coefficient of variation  ranging from half to double the assumed value that was entered:, and may 

also show (in green) the sample sizes computed by  the AIEP method, for a coefficient of variation 

ranging up to 50%. 

 

 
 
Stratified random samples 
 
If a stratified random sample is to be used, the population size in each stratum is required, together 

with the assumed proportion, rate or S.D. in each stratum.   

 

Three sample sizes are computed, based respectively on proportional allocation (i.e., using the 

same sampling fraction in each stratum), presumed optimal (Neymann) allocation, and (optionally) 

low-cost optimal allocation.  Neymann allocation reduces the variance of the estimate by 

increasing the sampling fraction in a stratum where the variance is larger, and decreasing it where 

it is smaller (Cochran 1977: 99).   Low-cost optimal allocation takes account of the average cost 

per subject in each stratum (which must be entered if this option is required) as well as the 

variance; it reduces the sampling fraction in a stratum where the cost is high.   

 

For each method of allocation, the required number of subjects in each stratum is reported as well 

as the total sample size; if costs are entered, the total cost is also computed. 

 

If the aim is to estimate proportions, rates or means in different population subgroups, a separate 

sample size computation should be conducted for each subgroup.   

 

Cluster samples 
 

For a cluster sample, it is assumed that the clusters of subjects are equal-sized and randomly 

selected, as in the cluster surveys advocated by WHO's Expanded Programme on Immunization 

(Bennett et al. 1991), which use clusters drawn from communities whose probability of selection is 

proportional to their size.  The required sample size is larger than for a simple random sample. 

 

In addition to the desired confidence level (e.g. 95%) and acceptable difference, an estimate of the 

design effect or rate of homogeneity must be entered.  The program then computes the sample size 

needed to obtain an estimate of the proportion, prevalence or mean with the chosen probability of 

being within the chosen distance from the true value; the sample size is rounded up to the nearest 

whole number.  (The design effect is the ratio of the variances of the values estimated from a 
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cluster sample and from a simple random sample of the same size.  The rate of homogeneity, or 

intracluster correlation coefficient [Bennett et al. 1991; Cochran 1977: 241], expresses the degree 

of similarity of cluster members. If a rate of homogeneity is entered, the program computes the 

design effect.)  

 

It is generally necessary to guess the design effect or rate of homogeneity, on the basis of 

published values observed in similar studies (using the same cluster size) in similar populations.  

Design effects of 2 or more are not uncommon.  In studies of conditions with a fairly uniform 

distribution in the population, such as blindness, it is safe to assume a design effect of say 1.5; but 

for estimating the prevalence of a condition that might be highly clustered, such as active 

inflammatory trachoma, a much larger design effect (5 or more) should be specified. To be on the 

safe side, enter a high value, e.g. a design effect of 3. Rates of homogeneity generally range from 

close to zero (say 0.02) to about 0.4.   

 

Optionally, the size of the population can also be entered, to permit a finite population correction.   

 

The program reports the sample size required, and also (as appropriate) the required number of 

clusters or cluster size.   

 

In addition, two graphs are displayed, showing the required number of clusters or cluster size.  The 

left-hand graph shows the number of clusters or the cluster size required under the specified 

conditions (confidence level, acceptable difference, maybe percentage of losses, and design effect 

or rate of homogeneity) if the true value of the proportion, prevalence or S.D in the population is 

anywhere from half to double the assumed value.  The right-hand graph shows the required 

number of clusters or cluster size under the specified conditions (confidence level, acceptable 

difference, and maybe percentage of losses) if the assumed proportion. prevalence or S.D. is 

correct, and the design effect is anywhere between half and double the value entered (or derived 

from the rate of homogeneity). 

 

 
 

 

For a stratified cluster sample, a separate sample size calculation for each stratum is recommended 

(Bennett et al. 1991).  The precision of the overall study (after weighting the results in accordance 

with the sizes of the strata) will then be somewhat greater than in individual strata. 

 

Case-finding 
 

To estimate the size of the random sample needed in order to identify a given number of subjects 

with a specific attribute (Lee 1993), choose a confidence level (e.g. 95%) and enter the estimated 
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prevalence of the attribute and the required number of subjects.  The sample size is rounded up to 

the nearest whole number. 

 

Graphs 
 

If a graph is displayed, the charted values can be read by clicking on the line.  Since the curves use 

interpolation, these values may not coincide perfectly with the reported results.  Accuracy can be 

enhanced by “zooming” - any segment of a curve can be magnified by pressing Ctrl and clicking 

on the graph, and then drawing a rectangle to outline the required segment.  The graph can be 

printed, copied to the clipboard for pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

 

METHODS 
 
Simple random samples 
 

To estimate a proportion or rate (converted to a proportion), formulae for the size (n) of a simple random sample are 

provided by (among others) Zar (1998: formula 24.35): 

 n = pqz
2
 / d

2 

where p = the assumed proportion 

 q = 1 - p  
z = two-tailed normal deviate (e.g. 1.96 for a 95% confidence level) 

d = half the width of the desired confidence interval 

 The alternative procedure, assuming that the true proportion or rate is only roughly known, is described by Fleiss et 

al. (2003: 34-36).  Note that there is a misprint in their formula 2.29: the za/2 in the right-hand term should be z
2
α/2.  

The formula incorporates a continuity correction (unlike the Zar formula), and this boosts the required sample size. 

If the assumed standard deviation (s ) is entered, the sample size (n) required for estimating a mean is 

 n = s
2
.t

2
 / d

2
  (Zar’s formula 7.7) 

where t = the two-tailed critical value of Student’s t with n-1 degrees of freedom 

d = half the width of the desired confidence interval. 

 

If the assumed coefficient of variance (CV) is entered, the usual formula is  

 n = CV
2
t
2
 / D

2 

where D = half the width of the desired confidence interval, expressed as a percentage of the mean. 

 

An iterative procedure is used to estimate t for use in the above formulae. 

 

The AIPE (accuracy in parameter estimation) procedure described by Kelley (2007) is based on a confidence interval 

for the coefficient of variation, formed by estimating a noncentrality parameter, followed by an iterative process. 

Sample sizes are obtained from Kelley's Tables 1, 2, and 3, using harmonic interpolation (Zar 1998, p. App10) in both 

dimensions where necessary; this is here less inaccurate than linear interpolation.  Interpolated sample sizes are least 

accurate if the coefficient of variation is large and/or the acceptable error is small. After interpolation, the sample size 

is rounded up to the nearest whole number, after making allowance for expected losses (see below). A finite 

population correction is not made. 
 

To apply a finite population correction, n is divided by [1 + (n – 1) / N ] (Zar’s formulae 7.12 and 24.35) 

where  N = population size 

 

The required number is rounded up to the nearest whole number, after making allowance (if necessary) for the 

percentage of expected losses (L%) by multiplying the number by  

1 / [1 - (L / 100)].   
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Stratified random samples 
 

The sample size for estimating a proportion or rate using a stratified random sample (by proportional or optimal 

[Neymann] allocation, with a finite population correction) is computed by formulae 5.65 and 5.66 [with Wn changed 

to Wh] of Cochran (1977).  The desired variance V is fixed at 

(d /z)
2
, 

where d is the acceptable difference and  

 z is the 2-tailed normal deviate corresponding to the desired confidence level.   

For optimal allocation, the sample size in each stratum is estimated by Cochran's formula 5.60; and for proportional 

allocation, by apportioning the total sample size in accordance with the relative sizes of the strata.  The required 

number in each stratum is then rounded up to the nearest whole number, after making allowance (if necessary) for 

expected losses (see above).  The numbers required in the strata are then summed to provide revised estimates of the 

total sample size.   
 

A similar approach is used for estimating a proportion or rate using low-cost optimal allocation; Cochran's formula 

5.66 is used, but replacing the numerator of the formula for n0 with 

∑[Wi•√(piqi) / √(Costi)] • ∑[Wi•√(piqi)*√(Costi)] 
where Wi, pi, qi, and Costi refer to the values in a specific stratum.  

 

The proportion of the low-cost sample allocated to a specific stratum is  

 [Wi•√(piqi)/√(Costi)] / ∑(Wi•√(piqi)/√(Costi) 

 
In addition, the data entered for the strata are combined to compute the overall population size and the overall 

proportion or rate, which are then used to estimate the required size (with a finite population correction) of a simple 

random sample, ignoring the stratification.     

    

The sample size for estimating a mean using a stratified random sample (by proportional or optimal [Neymann] 

allocation, with a finite population correction) is computed by formulae 5.47 and 5.48 of Cochran (1977).  The desired 

variance V is fixed at  
(d/z)2,  

where d is the acceptable difference 

z is the 2-tailed normal deviate corresponding to the desired confidence level.   

For optimal allocation, the sample size in each stratum is estimated by Cochran's formula 5.26; and for proportional 

allocation, by apportioning the total sample size in accordance with the relative sizes of the strata.  The required 

number in each stratum is then rounded up to the nearest whole number, after making allowance (if necessary) for 

expected losses (see above).  The numbers required in the strata are then summed to provide revised estimates of the 
totals.   

 

A similar approach is used for low-cost optimal allocation, but using the formulae on pages 91 and 92 of Moser 

(2002).   

In addition, the data entered for the strata are combined to compute the overall population size and the overall mean, 

which are then used to estimate the required size (with a finite population correction) of a simple random sample, 

ignoring the stratification; this is done by Zar's formula 7.7 (Zar 1998: 105), using a value of t estimated by an iterative 

procedure; the S.D. (in the total  population) that is used is the square root of the pooled variance:  

pooled variance = ∑[(SDi)
2
(Ni - 1] / ∑[Ni - 1]   

where SDi = S.D. in stratum i 

 Ni = size of stratum i 
 

Cluster samples 
 

For a cluster sample (without a finite population correction), the sample size is the required size for a simple random 

sample (computed by the above formulae), multiplied by the design effect E.  If the rate of homogeneity H is entered, 

E is calculated as follows, using the cluster size U (Bennett et al. 1991): 

   E = 1 + (U - 1)H 
To apply a finite population correction for estimating a proportion or rate, the sample size S is calculated as follows 

(Baras M, personal communication): 

   S = BN  /  [D
2
(N - 1) + B]   

where B = Z2 • P(1 - P) • E   
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 P = estimated proportion with the attribute 

 N = population size 

 D = acceptable difference 

 

Case-finding 
 
To identify a given number R of subjects with a specific attribute (Lee 1993), the sample size S is: 

S = [(V - U) / 2P] 
2
    

where  U = -Z{√[P(1 - P)]} 

 V = √(U2 + 4PR)   

P = assumed proportion in population  

Z  = standard normal variate corresponding to (1 - confidence level); e.g. 1.645 for 95%. 
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L1.  APPRAISAL AND USE OF “YES-NO” SCREENING AND 
DIAGNOSTIC TESTS AND MEASURES 

 
This module is applicable to “yes-no” screening and diagnostic tests, and to measures of the 

presence or absence of any attribute, not necessarily a disease.   [The term “disease” will here be 

used to refer to whatever attribute or outcome the test or measure aims to indicate.] It is applicable 

to tests that yield a range of results, if a selected cutting-point is used.  The module can also 

appraise a risk marker(indicative of an increased probability that the disease will occur, rather than 

an increased probability that it is present).  

 

The required entries are sensitivity, specificity, and (if confidence intervals are required) the sizes 

of the samples in which they were measured; or, alternatively, the numbers of positives and 

negatives in samples with and without the disease. The appraisal can also be based on the odds 

ratio. 

 

The program appraises the validity of the test or measure by computing sensitivity and specificity 

(if not entered), chance-corrected sensitivity and specificity, Martin and Femia's chance-

corrected measures, false positive and negative rates, Youden's index, the diagnostic odds 

ratio, likelihood ratios for positive and negative tests,  Kullback-Leibler distances,  Brier skill 

score and two weighted kappa coefficients. 

 

The program also provides results that apply to use of the test or measure in a group or population 

with a known prevalence of the disease or other target attribute.  If these results are required, the 

prevalence can be entered or (optionally) computed from the sizes of the samples in which validity 

was appraised; the latter option assumes that the combined samples are representative of the 

population.  The additional results are the misdiagnosis percentages, post-test probabilities, 

predictive value, several measures of gain in certainty (measures of the change that the test can 

be expected to make in the clinical estimate of the probability that the disease is present or absent), 

the numbers of tests per case identified, the percentage agreement, and  a series of alternative 

weighted kappas that take account of the relative importance attached to false negatives and to 

false positives.  A graph shows the relationship of the predictive values of positive and negative 

results to the prevalence of the disease or other target attribute. 

 

An option is offered for the computation of post-test probabilities from the likelihood ratio, 

without entering sensitivity or specificity .  This is for use by clinicians who know a test’s 

likelihood ratio and wish to decide whether the test is likely to improve the certainty of diagnosis 

enough to warrant its performance. The pretest probability must be entered. The program computes 

the post-test probability and the gain in certainty; a graph shows their relationship to the pretest 

probability. 

 

An option is also offered for estimating the prevalence of the disease (or other outcome attribute) 

from the frequency of positive test results.  If confidence intervals are required, this requires entry 

of the size of the sample in which the test was used., as well as sensitivity and specificity or the 

numbers of true and false positive results.  A graph shows the relationship between prevalence 

and the frequency of positive test results. 
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Sensitivity, specificity, and false positive and negative rates 
 
Sensitivity and the false negative rate refer to the frequency of positive and negative results, 

respectively, in subjects who (according to a “gold standard) have the disease (or other attribute).  

Specificity and the false positive rate refer to the frequency of negative and positive results, 

respectively, in subjects without the disease. 

 

In some instances the program revises the entered sensitivity or specificity value to make it 

consistent with a whole-number numerator.  This is done if the entered value differs from the 

sensitivity or specificity obtained by rounding its numerator (calculated from the entered value and 

the size of the sample in which it was determined) to the nearest integer. 

 
“Chance-corrected” measures of sensitivity and specificity 
 

“Chance-corrected” measures of sensitivity and specificity (proposed by Brenner and Gefeller 

1994) make allowance for the occurrence of chance agreement between the test result and the true 

status.  In a test for the presence of a disease (or other attribute), chance-corrected sensitivity is 

defined as the proportion of positive results, among people with the disease, that can be attributed 

to the presence of the disease rather than to chance, chance agreement being estimated by the false 

positive rate.  Similarly, chance-corrected specificity is the proportion of negative results, among 

people without the disease, that can be attributed to the absence of the disease rather than to chance 

(estimated by the false negative rate).  A value below zero means that sensitivity or specificity is 

lower than might be expected by chance. These measures do not take disease prevalence into 

account. 

 

Martin and Femia's chance-corrected measures 

 

These chance-corrected measures of agreement are based on Martin and Femia's delta model  

(Martin and Femia 2004, 2008)  The program estimates the "overall index", which is the chance-

corrected  percentage of "Diseased, test +ve" and "Nondiseased, test -ve" pairs among  all pairs of 

observations) - i.e., it is a chance-corrected index analogous to the percentage agreement - and its 

two components , namely the chance-corrected percentage of agreements with respect to diseased 

subjects ("Diseased, test +ve" pairs, as a percentage of all pairs),and the chance-corrected 

percentage of agreements with respect to nondiseased subjects ("Nondiseased.,test -ve"  pairs, as a 

percentage of all pairs).  It also provides measures of the raters' "conformity" with the diagnosis, 

namely the chance-corrected percentage of true positive ratings among diseased subjects (which is 

analogous to sensitivity) and the chance-corrected percentage of true negative ratings among 

nondiseased subjects (which is analogous to specificity). The measures are asymptotic  estimators.  

Negative indices may be regarded as zero. Approximate standard errors are estimated separately 

for studies where the numbers of diseased and nondiseased were fixed, or not fixed, in advance.  

These measures are computed only if the numbers of "Diseased, test +ve" pairs etc. are entered. 

 

The estimator of total agreement may sometimes be deceptive, providing a non-zero value when 

there is no agreement (Martin and Femia 2008). This may be suspected if it is similar to either of 

the agreement indices and "the marginals are unbalanced in the same direction" (e.g., the column 1 

total exceeds the column 2 total, and the row 1 total exceeds the row 2 total).  A warning message 

is displayed if the latter condition applies. 
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If the prevalence of the disease or other target attribute (i.e., the pretest probability of its presence) 

is entered or computed, the program also estimates the "predictivity" of positive and negative test 

results. These indices are the chance-corrected proportion with the target attribute, among those 

with positive results; and the  chance-corrected proportion who do not have the target attribute, 

among those with negative results. They are analogous to the positive predictive value and the 

negative predictive value. If the prevalence of the target attribute is estimated from the study 

sample, the S.E.s of the measures are estimated. 

 

Youden’s index 

Youden's index is the sum of sensitivity and specificity (expressed as proportions) minus one.  If 

expressed as a percentage it has been termed the "per cent gain in certainty" (Connell and Koepsell 

1985).  It is the expected total net gain in certainty, as a proportion of the maximum possible gain 

(see below)., and has been termed the “maximum proportional reduction in expected regret”, i.e. 

the maximum possible reduction of diagnostic uncertainty, whatever the pretest probability of the 

disease (or other attribute) (Hilden and Glasziou 1996). A Youden's index of 0 means that the test 

outcome is independent of the presence of the disease, and the test is useless. If Youden's index is 

less than 0, the test is misleading. Confidence limits for Youden’s index are now (from version 

2.75) computed by a procedure that takes account of the association between sensitivity and 

specificity (Chen et al. 2015). 

 

The area under the ROC curve (C-statistic) is computed from Youden’s index (Hilden and 

Glasziou 1996), for each study and for the combined (Mantel-Haenszel) estimate. The area under 

the ROC curve expresses the probability that the test will correctly rank a randomly chosen person 

with the disease and a randomly chosen person without the disease.  Its value is 50% if the test 

does not discriminate.  As a rough guide, an area of  97% or more indicates excellent 

discriminatory power; an area of at least 92% very good discriminatory power, and an area of at 

least 75% good discriminatory power (Simon 2004). 

 

Diagnostic odds ratio 
 
The diagnostic odds ratio (Glas et al. 2003) is a measure of the discriminatory power of a test, 

taking account of both sensitivity and specificity, and without distinguishing between the effects of 

sensitivity and specificity.  It is the ratio of the odds in favour of a positive result in subjects with 

the disease (or other attribute) to the odds in favour of a positive result in subjects without the 

disease.  It is equivalent to the ratio of the likelihood ratios for positive and negative test results. 

 

A diagnostic odds ratio (DOR) of 1 or less means that the test has no discriminatory value.  The 

DOR rises with increasing sensitivity or specificity, rising steeply as sensitivity or specificity 

becomes near perfect (Glas et al. 2003), and reaching infinity if both sensitivity and specificity are 

100%. If both are 70%, the DOR is  5.4; if both are 80%, the DOR is 16; if both are 90%, the DOR 

is 81; if both are 95%, the DOR is 361; and if both are 99%, the DOR is 9801. 

  

If the four cell frequencies (true and false  positives and negatives) are known, and any is zero, an 

adjusted DOR is shown, after adding 0.5 to each cell frequency. 
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Likelihood ratios 
 
The likelihood ratio is the ratio of the prevalence of a specific result in subjects with the disease (or 

other attribute) to its prevalence in people without the disease.  Likelihood ratios are calculated for 

positive and negative test results.   

 

A value greater than 10 or less than 0.1 indicates that the test will provide convincing diagnostic 

evidence, effectively “ruling in” or “ruling out” a diagnosis, and a value greater than 5 or below 

0.2  provides strong diagnostic evidence; whereas if the likelihood ratio is between 0.5 and 2 the 

test has little or no effect on the certainty of diagnosis (Jaeschke et al. 1994). 

 

Kullback-Leibler distances 
 
Kullback-Leibler distances, which are measures of the discrepancy between two probability 

distributions, can be used as measures of the extent to which performing a test can be expected to 

alter the odds in favour of correct decisions in "ruling in" positives or in "ruling out" negatives.  As 

suggested by Lee (1999), this may be helpful in situations where a choice must be made between 

tests.  The computation does not require information about the pretest probability. 

 
Brier skill score 

 

The Brier skill score (Steyerberg et al. 2010) measures the accuracy of predictions, such as those 

based on test results. It is derived from the Brier score (Brier 1950), which is based on a 

comparison of the prediction for each subject with the observed occurrence of the disease (or other 

attribute).  

 

The Brier skill score expresses the accuracy of these predictions as a percentage. In this program it 

is based on a comparison with predictions based solely on knowledge of the frequency of the 

disease in the observed subjects. It ranges from 100%, indicating perfect predictions, through 0%, 

which indicates that the test provides no improvement over predictions based solely on the 

frequency of the disease, to negative values, which indicate that the test provides worse predictions 

than those based solely on the frequency of the disease (Mason 2004). The prevalence of the 

disease in the target population is not taken into account. 

 

95% confidence intervals are reported.  

 

The score is not reported if only sensitivity and specificity are entered. 

 

Post-test probabilities and predictive value 
 
If  the prevalence of the disease or other target attribute (i.e., the pretest probability of its presence) 

is entered, the program estimates the post-test probability of its presence (conditional on the test 

result).   It reports the positive and negative predictive values (the predictive value of a positive or 

negative test).  The positive predictive value is the proportion with the target attribute, among 

those with positive results; and the negative predictive value is the proportion who do not have the 

target attribute, among those with negative results.    

 

Confidence intervals are estimated by two methods, one of which (Zou 2004) takes account of the 

variability of the pretest probability (prevalence), and is applied only if the size of the sample in 
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which prevalence was appraised is entered. Confidence intervals are estimated only if the size of 

the “diseased” sample and the size of the “not diseased” sample are available.  

 
The indices displayed in graphs are the predictive value of a positive test and the predictive value 

of a negative test. 

 

Misdiagnosis percentages 
 
If sensitivity, specificity and prevalence are entered, the percentages of tests that are expected to 

yield misdiagnoses are computed – i.e., the percentages expected to yield a false positive results, a 

false negative results, and any false result. These expectations are also expressed as the number of 

tests that will yield one false positive result, or one false negative result, or one false result of 

either kind. 

 

The number of tests expected to yield a false result of either kind is the "number needed to 

misdiagnose" (NNM), a measure of diagnostic test effectiveness suggested by Habibzadeh and 

Yadollahie (2013), on the grounds that such measures are more intuitively appealing to clinicians 

than positive or negative predictive values, likelihood ratios, or Youden's index. 

 

Gain in certainty 
 
If  the prevalence of the disease (or the pretest probability of its presence) is entered, the program 

provides several measures of the gain in certainty resulting from performance of the test (Connell 

and Koepsell 1985).  The gain in certainty is the change that the test can be expected to make in 

the clinical estimate of the probability that the disease is present or absent.  Where possible, 

confidence intervals are provided. 

 

The gain in certainty is the difference between the pre-test probability – that is, the likelihood, 

based only on the known or assumed prevalence, that the patient has or does not have the disease – 

and the post-test probability, based on information derive+++++++++++++++ed from the test.  

Gain in certainty is computed separately for positive and negative test results.  In each instance it is 

expressed both as a net difference and as a percentage of the pre-test probability of the presence or 

absence of the disease.  The total gain in certainty is also computed, taking account of the 

probabilities of positive and negative results.  It is expressed both as a net difference and as a 

percentage of the maximum possible gain in certainty.  The separate contributions of positive and 

negative results to this percentage are displayed. 

 

The gain in certainty is determined by sensitivity, specificity, and the prevalence of the disease in 

the subgroup in which the test is to be used (usually a specific clinic population, or patients with a 

specific pattern of clinical manifestations); the entry of an erroneous estimate of prevalence may 

yield very misleading results.  Only the total net gain is uninfluenced by prevalence.  

 

The confidence intervals for post-test probabilities and measures of gain in certainty are based on 

the assumption that the estimates of sensitivity and specificity are subject to random error but 

prevalence is a known fixed quantity.  A negative value for the lower confidence limit of any of 

the measures of gain in certainty indicates a decrease in certainty. 

 

In addition to the above measures, the predictive summary index  (PSI) recommended by Linn and 

Grunau (2006) is computed, with its 95% confidence interval. This is a measure of total net gain in 

certainty, and is claimed to be especially useful in a clinical setting. The PSI is analogous to 
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Youden’s index; but unlike Youden's index, which is based on the proportions of subjects who are 

correctly diagnosed (i.e sensitivity and specificity), the PSI is based on the proportions of tests 

(positive and negative, respectively) that are correct. 

 

Appraisal based on odds ratio 
 
The appraisal of the test can be based on the odds ratio (together with the sizes of the diseased and 

non-diseased samples and the number of positive tests), using a procedure suggested by Simel et 

al. (2013) for use in meta-analyses of diagnostic tests if there are some studies that do not  report 

sensitivity etc. The appraisal uses the numbers of  true and false positives and negatives computed 

by a quadratic formula.  

 

If an adjusted odds ratio, controlling for other variables (e.g. one derived from a multivariate 

logistic analysis), is entered, the results reflect the validity of the test when the other variables are 

taken into account. 

 

Numbers of tests per case identified 
 

As a guide to the potential cost of a screening program (e.g. in terms of inconvenience or 

resources), DESCRIBE reports two numbers: the number of tests required to identify one case, and 

the number of positive tests per case identified.  These numbers are valid only if the test is applied 

in a population with the prevalence that is entered or computed from the sample sizes entered.   

 

The total economic cost of a projected screening program is the first number multiplied by the cost 

of a screening test, plus the second number multiplied by the cost of the confirmatory 

investigations required when a screening test is positive, plus setting-up costs and overhead 

expenses. 

 

Percentage agreement 
 
The percentage of subjects whose test result coincides with their true status is sometimes called the 

“index of validity” (Taube 1986).  It is valid only if the test is applied in a population with the 

prevalence that is entered or computed from the sample sizes entered.   

 

Unlike kappa (see below), the percentage agreement makes no allowance for chance agreement. 

 
Kappa 
 
If the disease prevalence is entered or computed, a set of alternative weighted kappas is computed, 

showing the agreement between the test result and the true status, after allowing for chance 

agreement.  The weights express the relative importance (“clinical cost”, undesirability) attached 

to false negatives and false positives (Bloch and Kraemer 1989, Kraemer et al. 2002).   At one 

extreme, false positives are regarded as being 100 times more undesirable than false negatives; this 

might be an appropriate kappa for a diagnostic test that aims to provide definitive proof that a 

disease is present.  At the other extreme, false negatives are regarded as being 100 times more 

undesirable than false positives; this might be appropriate for a screening test that aims to find all 

possible cases. These kappa values apply only to a target population with the disease prevalence 

that is entered or computed from the sample sizes entered.   
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If  the disease prevalence is not entered or computed, two weighted kappas are computed 

(Kraemer 2006), one placing emphasis on the avoidance of false positives (when the aim is 

providing definitive proof that a disease is present) , and one placing emphasis on the avoidance of 

false negative (when the aim is to find all possible cases).. 

 
Prevalence of the disease 
 

The prevalence of the disease (or whatever other attribute the test aims to indicate) in a target 

population is estimated from the prevalence of positive results in the population, on the assumption 

that the sensitivity and specificity values are applicable to this population, whether these values 

were measured in samples of diseased and nondiseased subjects from this population or from 

similar populations.  The expected prevalences of true and false positive results are reported. 

 

The prevalence of the disease is not estimated if the prevalence of positive tests is less than the 

false positive rate, if the false positive rate exceeds the test’s sensitivity., or if sensitivity (revised) 

plus specificity (revised) = 100%. 

 

Three approximate 95% confidence intervals are computed, one that takes the sensitivity and 

specificity to be known constant values, and two (computed if the detailed results of the studies 

used to determine sensitivity and specificity are entered) that take account of uncertainty in the 

estimation of sensitivity and specificity. The latter two estimates are based on methods described 

by Rogan and Gladen (1978), and by Lang and Reiczigel (2014), who describe the advantages of 

their procedure, although  its results are somewhat conservative when the prevalence is close to 0 

or 100%.  

 

Graphs 
 
If the prevalence of the disease (or other attribute) is entered, a graph is displayed, showing the 

predictive values of positive and negative results, in relation to prevalence, for prevalences ranging 

from half to (if possible) double the value that is entered (or derived from the sample sizes 

entered).  Here is an example: 

 

 
 

If the frequency of positive test results is entered,  a graph is displayed, showing the computed 

prevalence of the disease (or whatever other attribute the test points to) and the computed 

prevalence of true positive results (i.e. the prevalence of cases detected by the test), in relation to 

the frequency of positive test results.  The gap between the curves represents the cases missed by 

the test (false negative results).  The range displayed for the prevalence of positive test results 

extends from half the value entered by the user (or the highest value associated with a disease 

prevalence of zero, whichever is higher) to twice the value entered by the user (or the lowest value 

associated with a disease prevalence of 100%, whichever is the lower).  Here is an example: 
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If the option for the computation of post-test probabilities from the likelihood ratio is selected, a 

graph is displayed, showing the post-test probability % of the disease (or whatever other attribute 

the test points to) and the net gain in certainty (the absolute difference between the pretest and 

post-test probabilities %), in relation to the pretest probability %.  The range displayed for the 

pretest probability extends from half the value entered by the user  to (if possible) twice the value 

entered by the user.  Here is an example: 

 

 
 

In each of these graphs, the charted values can be read by clicking on the relevant line.  Accuracy 

can be enhanced by “zooming” – any segment of a curve can be magnified by pressing Ctrl and 

clicking on the graph, and then drawing a rectangle to outline the required segment.  The graph can 

be printed, copied to the clipboard for pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

 

METHODS 
 
Sensitivity, specificity, and false positive and negative rates 
 

The formulae are: 

sensitivity = a / (a + c)  

specificity = d / (b + d) 

false positive rate = b / (b + d) 

false negative rate = c / (a + c) 
where  a = frequency of positive results in subjects in whom the disease [or other attribute] is present 

 b = frequency of positive results in subjects in whom the disease [or other attribute] is absent  
 c = frequency of negative results in subjects in whom the disease [or other attribute] is present 

d = negative results in subjects in whom the disease [or other attribute] is absent 

 

Confidence intervals are based on  the Wilson procedure (Newcombe and Altman 2000: 46-47). 

 

If the sample sizes on which sensitivity and specificity are based are entered, the sensitivity or specificity that is 

entered is revised, to make it consistent with a whole-number numerator, if the entered value differs from the 

sensitivity or specificity obtained by rounding its numerator (calculated from the entered value and the size of the 

sample in which it was determined) to the nearest integer.  The revised value is the sensitivity or specificity computed 

from the rounded-off numerator. 
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Chance-corrected measures of sensitivity and specificity 
 

The formulae for chance-corrected measures of sensitivity (Se*) and specificity (Sp*)  (Brenner and Gefeller 1994) 

are:  

Se* = 1 + [(Se - 1) /  Sp], or 1 - LRN     

Sp* = 1 + [(Sp - 1) /  Se], or 1 - 1 / LRP   

where  Se and Sp = sensitivity and specificity (expressed as proportions).  

 LRN and LRP = likelihood ratios (see below) for, respectively, negative and positive results 
Negative corrected values (indicating less than chance expectation) are reported as zero. 

 

Confidence intervals are derived from the confidence intervals of the likelihood ratios. 

 

Martin and Femia's chance-corrected measures 

 

Formulae for the asymptotic estimators for chance-corrected overall agreement (the overall index), for agreement with 

respect to "yes" and "no" responses, for conformity, for predictivity, and for their variances, are provided by Martin 

and Femia (2008: Table 6). Before computation, 1 is added to each of the four cells in the 2 x 2 table to improve the 

performance of the estimators. The formulae used for calculating S.E.s depend on whether or not the numbers of 

"diseased" and "nondiseased" are fixed in advance. 

 
Youden’s index 
 

The formula for Youden's index is  

Se + Sp - 1  

where  Se and Sp = sensitivity and specificity (expressed as proportions).  

 
Its confidence interval is calculated  by formula 8 of Chen et al. (2015). [In versions prior to 2.75, use was made of the 

formula provided byYouden (1950) and cited by Salmi (1986)]. It is appropriate if the numbers of diseased and 

nondiseased are at least 20, and if the index is not very close to zero or one. 

 

The area under the ROC curve is  
(Youden’s index + 1) / 2 (Hilden and Glasziou 1996, formula 26). 

 
Diagnostic odds ratio 

 
The formula is 

 Se * Sp / (1 – Se) / (1 – Sp), or ad / bc. 
 

The 95% confidence limit is estimated from the standard error of the log odds ratio (Newcombe and Altman 2000,: 60-

62). 

 
If a, b, c or d is zero, 0.5 is added to each before calculating the odds ratio and its standard error (formulae 5.20 and 

5.33 of Fleiss 1981). 

 
Likelihood ratios 
 

For a positive result, the likelihood ratio is  Se / (1 - Sp) 

and for a negative result it is (1 - Se) / Sp 
where Se and Sp = sensitivity and specificity (expressed as proportions).  

Formulae for confidence intervals for the likelihood ratios are provided by Sullivan (1990).  They use the standard 
error of the log of the ratio (formula 27 of Fleiss 1993).  

 

Kullback-Leibler distances 
 

Formulae are provided by Lee (1999). 
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Brier skill score 
 

The general formula for the Brier score (from which the Brier skill score is derived) is  

  ∑ (Pi - Di)
2 
/N 

where  N = number of observations 
 Pi = prediction for subject i (probability, between 0 and 1) 

 Di = observed status of subject i (between 0 and 1) 

 

Since in this instance Pi = 0 (for a negative test result) or 1 (for a positive test result) and Di = 0 (disease [or other 

attribute] absent) or 1 (disease present), the formula for the Brier score reduces to 

   (false positives + false negatives) / N. 

Confidence intervals for this proportion are estimated by Wilson's method (Newcombe and Altman 2000: 46-47). 

 

The formula for the Brier skill score(Steyerberg et al. 2010) is 

100(1 - B / F) 

where  B = Brier score  

 F = P * (1 - P) 
 P = proportion with the disease 

 

Confidence intervals are estimated by substituting the confidence limits of the Brier score for B. 

 

Post-test probabilities and predictive value 
 

The predictive value % of a positive test (the post-test probability % of the disease, after a positive result) is 

(Se.DP) / [Se.DP + (1 - Sp)(1 - DP)] x 100 
and the predictive value % of a negative test (the post-test probability % of absence of the disease, after a negative 

result) is 

 (1 - DP) * Sp / [(1 - DP) * Sp + DP * (1 - Se)] * 100; 
where  DP is the disease prevalence (known or assumed), expressed as a proportion. 

Se and Sp = sensitivity and specificity (expressed as proportions). 
 

The post-test probability % of the disease after a negative result is 

100% – predictive value % of a negative test. 
 

Confidence intervals are estimated by the methods described by Fleiss et al. (2003: 156 and 712) and Zou (2004).   

 

The former method provides results very close to those of the procedure (Monsour et al. 1991) used in earlier versions 
of this program.  For confidence intervals for negative predictive values, appropriate changes are made to the 

published formulae.  To avoid zero division, 0.5 is added to cell values if necessary when computing sensitivity and 

specificity. 

 

 Zou's method, which is a modified logit procedure, takes account of variability of the pretest probability.  In its 

computation, 0.3 is added to numerators and 0.6 to denominators  when calculating the pretest probability, sensitivity, 

and false positive rate. 

 

 If a positive or negative predictive value is 100%, the corresponding upper confidence level is raised to 100%. 

 

Misdiagnosis percentages 
 
The formulae are: 

        For false positives:  (1 - Prevalence) * (1 - Specificity) * 100; 

        For false negatives:  Prevalence *(1 - Sensitivity) * 100; 
        For any false result:  The sum of the above two. 

 

By using reciprocals, these expectations can also be expressed as the number of tests that will yield one false positive, 
or one false negative result, or one false result of either kind (which is Habibzadeh and Yadollahie's NNM). 
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Gain in certainty 
 

Gain in certainty is computed by formulae provided by Connell and Koepsell (1985).  Confidence intervals are 

estimated by substituting the confidence limits for the relevant post-test probability (using the procedure of Fleiss et al. 

2003) or (for the expected total net gain in certainty) for Youden’s index in the formulae for gain in certainty. 

 

The predictive summary index is computed as PVP + PVN  - 1 (Linn and Gruneau 2006), and expressed as a 

percentage, where PVP is the predictive value of a positive test  and PVN is the predictive value  of a negative test. Its 

95% confidence interval is estimated by a formula analogous to that used for Youden’s index (Youden 1950), and is 

appropriate if the numbers with positive and negative test results are at least 20, and if the index is not very close to 

zero or one,  

 
Appraisal based on odds ratio 
 
The procedure for the use of the odds ratio is described by  Simel et al. (2013) (formula 2, using the negative 

discriminant). If the odds ratio is 1, it is converted to 1.001; and if it is infinity, it is converted to the square of the 

combined samples, or to 10,000, whichever is larger. 

  

Kappa 
 
The formula for alternative weighted kappas is in the footnote to Table III of Kraemer et al. (2002) if the disease 

prevalence is entered or computed, and  in the footnote to Table II of Kraemer (2006) if it is not. 

 

Prevalence of the disease 
 
The formula for prevalence of the disease (or other target attribute) (Rogan and Gladen 1978) is: 

Prevalence = (t + Sp – 1) / (Se + Sp – 1) 
where  t = prevalence of positive tests 

Se and Sp = sensitivity and specificity (expressed as proportions). 

A computed prevalence of less than 0  is changed to 0, and one of more than 100% is changed to 100%. 

 

Confidence intervals for the prevalence are based on the two variance formulae provided by Rogan and Gladen (1978: 

75) and (also) by Greiner and Gardner (2000), and also on formula 16 of Lang and  Reiczigel (2014). 

The prevalence of  true positive results is computed as  Prevalence x Sensitivity, and  this is  subtracted from the total 

prevalence of positive results to provide the prevalence of false positive results. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



                                                                                         L2.  TWO SCREENING OR DIAGNOSTIC TESTS 

90 

 

 
L2.  COMPARISON OR USE OF TWO SCREENING OR 

DIAGNOSTIC TESTS 
 
This module is applicable to “yes-no” screening and diagnostic tests for the presence or absence of 

a disease (or any other attribute) that have been appraised against a “gold standard” that defines the 

subject as a “case” or a “noncase”.  It is applicable to tests that yield a range of results, if a single 

cutting-point is used.  The program compares the tests, and appraises the validity of the combined 

tests.  [The term “disease” may refer to whatever attribute the test or measure aims to indicate.] 

 

The basic entries are the test results in samples of cases and noncases.  If the tests were used in the 

same subjects, the paired  results (e.g., “Test A positive, Test B negative”) are required.   

 

If the two tests were used in the same subjects and “gold standard” tests were used for all subjects, 

the prevalence of the disease in the target group or population can be entered (otherwise, the 

combined samples are taken to be representative of the target group).  Also, the weight to be given 

to false negatives (FNs), relative to the weight given to false positives (FPs), can be entered.  The 

weights express the relative undesirability (“costs”) of FNs and FPs.  FNs should be given a large 

weight if the aim is to detect all cases, and a small weight if the aim is to establish a definitive 

diagnosis.  If a weight is not entered, equal weight is given to FNs and FPs.   

 

If the two tests were used in the same subjects and “gold standard” tests were used for all subjects, 

the program reports the characteristics of the test (sensitivity, specificity,  false positive rate, 

Youden’s index, diagnostic odds ratios, likelihood ratios, and post-test probabilities) and provides 

a comparison of sensitivities, false positive rates,  specificities, positive and negative 

predictive values, and Youden’s indices. Two indices that take account of the weights given to 

FNs and FPs are provided: risk (“expected loss”) and kappa, with significance tests for the 

differences between the tests.  An equivalence test is offered, comparing the proportions of 

correct results in relation to the “gold standard”;  this requires paired data (e.g., “Test A correct, 

Test B incorrect”); the bounds of “equivalence” must be defined, by specifying the largest 

difference that is to be regarded as negligible (e.g. 0.05).  Sensitivity, specificity and post-test 

probability are computed for the combined tests, done in parallel or in either sequence. 

 

If the two tests were used in the same subjects but “gold standard” tests were restricted to subjects 

with positive results, the program provides a comparison of sensitivities, false positive rates,  

specificities, positive and negative predictive values, and Brier skill scores.  If these findings 

do not clearly indicate that one test is preferable, FP:TP ratios (false-positive:true-positive ratios) 

are provided.  Relative sensitivity and the relative false positive rate are computed for the 

combined tests, done in parallel or in sequence, and a Brier skill score is reported for the 

combined tests. The program compares the tests and provides recommendations concerning their 

choice, and appraises the validity of the combined tests. 

 

If the two tests were used in different subjects, the characteristics of the tests that are reported are 

sensitivity, specificity,. chance-corrected sensitivity and specificity, Youden's index, diagnostic 

odds ratios, and likelihood ratios.   The program provides a comparison of sensitivities, false 

positive rates, specificities, and Youden’s indices.   
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Characteristics of the tests 
 

Sensitivity refers to the frequency of positive results in cases, and specificity and the false positive 

rate refer to the frequency of negative and positive results, respectively, in noncases.  

 

If the tests were appraised in different samples, sensitivity and specificity must be entered, and the 

program may revise the entered value to make it consistent with a whole-number numerator.  This 

is done if the entered value differs from the sensitivity or specificity obtained by rounding its 

numerator (calculated from the entered value and the size of the sample in which it was 

determined) to the nearest integer. 

 

“Chance-corrected” sensitivity and specificity (measures proposed by Brenner and Gefeller 1994) 

make allowance for the occurrence of chance agreement between the test result and the true status.  

It is the proportion of positive results, among cases, that can be attributed to the presence of the 

disease rather than to chance, chance agreement being estimated by the false positive rate.  

Similarly, chance-corrected specificity is the proportion of negative results, among noncases, that 

can be attributed to the absence of the disease rather than to chance (estimated by the false 

negative rate).  A value below zero means that sensitivity or specificity is lower than might be 

expected by chance. These measures do not take disease prevalence into account. 

 

Youden's index is the sum of sensitivity and specificity (expressed as percentages) minus 100.  It 

has been termed the "per cent gain in certainty" (Connell and Koepsell 1985).  It is the expected 

total net gain in certainty, as a proportion of the maximum possible gain (see below)., and has been 

termed the “maximum proportional reduction in expected regret”, i.e. the maximum possible 

reduction of diagnostic uncertainty, whatever the pretest probability of the disease (or other 

attribute) (Hilden and Glasziou 1996). A Youden's index of 0 means that the test outcome is 

independent of the presence of the disease, and the test is useless. If Youden's index is less than 0, 

the test is misleading. 

 

The diagnostic odds ratio (DOR) is the ratio of the odds in favour of a positive result in cases to 

the odds in favour of a positive result in noncases.  It is equivalent to the ratio of the likelihood 

ratios for positive and negative test results.  A high DOR means that the odds of a positive test are 

relatively high in cases.  A value of 1 or less means that the test has no discriminatory value.  The 

DOR rises with increasing sensitivity or specificity, rising steeply as sensitivity or specificity 

becomes near perfect (Glas et al. 2003), and reaching infinity if both sensitivity and specificity are 

100%. If both are 70%, the DOR is  5.4; if both are 80%, the DOR is 16; if both are 90%, the DOR 

is 81; if both are 95%, the DOR is 361; and if both are 99%, the DOR is 9801. 

 

The likelihood ratio is the ratio of the prevalence of a specific result in cases to its prevalence in 

noncases.  Likelihood ratios are calculated for positive and negative test results.   

 

The post-test probability of the disease, which is conditional on the pre-test probability (i.e., the 

disease prevalence in the target group or population), refers to the probability if the test is positive 

(unless otherwise stated) or negative.  The predictive value of a positive test, or positive predictive 

value,  is the post-test probability of the disease; and the predictive value of a negative test, or 

negative predictive value, is the post-test probability of absence of the disease.  
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Comparison of sensitivities, false positive rates, specificities, and predictive values 
 

If the tests were applied to the same subjects (and paired results are entered), the program 

computes relative sensitivity, relative specificity, and the relative false-positive  rate - that is, the 

ratios of the values for Test A to the values for Test B,  with 95% confidence intervals for the 

former two indices.  A test that has a higher sensitivity than the other, without having a higher 

false-positive rate than the other, can be regarded as preferable (ignoring considerations of cost, 

convenience, etc.).  Also, the program does significance tests for the differences between the 

sensitivities and between the specificities. 

 

According to computer simulations (Cheng et al. 2000), the relative sensitivity estimate is 

unbiased if the true number of cases (diseased subjects) exceeds 30, and the relative false-positive 

rate if the number of noncases exceeds 200.  The confidence intervals are adequate if the number 

of cases or noncases exceeds 150. 

 

95% confidence intervals are reported for the differences between sensitivities, specificities and 

false positive rates, using Wald intervals, which are recommended by Wenzel and Zapf \2013) 

despite their slightly anti-conservative results for small sample sizes. 

 

If the tests were applied to different subjects, the program reports the differences between the two 

sensitivities, between the two specificities, between the two false-positive rates, and between the 

chance-corrected versions of the indices, with their 95% confidence intervals. 

 

If both tests were applied to all subjects, the significance of the differences between the two 

positive predictive values and between the two negative predictive values is tested, using the WGS 

(weighted generalized score) statistic described by Kosinski (2013). The tests are based solely on 

the observed samples; account is not taken of the prevalence of the disease (or other target 

attribute) in the population. 

 

Comparison of Youden’s indices 
 
A comparison of the Youden’s indices for two tests is especially useful if one test has a higher 

sensitivity and the other has a higher specificity.  

 

Confidence limits for the difference are calculated if the tests were performed in different subjects, 

or in the same subjects with "gold standard" tests  used for every subject. The calculations take 

account of the association between sensitivity and specificity (Chen et al. 2015). 

 

Brier skill scores 
 
The Brier skill score (Steyerberg et al. 2010) measures the accuracy of predictions, such as those 

based on test results. It is derived from the Brier score (Brier 1950), which is based on a 

comparison of the prediction for each subject with the observed occurrence of the disease (or other 

attribute).  

 

The Brier skill score expresses the accuracy of these predictions as a percentage. In this program it 

is based on a comparison with predictions based solely on knowledge of the frequency of the 

disease in the observed subjects. It ranges from 100%, indicating perfect predictions, through 0%, 

which indicates that the test provides no improvement over predictions based solely on the 

frequency of the disease, to negative values, which indicate that the test provides worse predictions 
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than those based solely on the frequency of the disease (Mason 2004). The prevalence of the 

disease in the target population is not taken into account. 

 

Brier skill scores are reported for each test (with a significance test comparing them), and for the 

combined tests (with their 95% confidence intervals). The scores are not reported if the tests were 

not performed on all subjects, or if the true status of all subjects is not known. 

 

Choice of a test 
 

If one test is more sensitive but less specific than the other, the program provides a 

recommendation concerning the choice of a test as a basis for action, depending on the disease 

probability that is regarded as calling for action (Vickers et al. 2013). The recommendation may 

also be for action in all cases or in no cases. 

 
Risk (“expected loss”) and kappa 
 
If the two tests were used in the same subjects and “gold standard” tests were used for all subjects, 

two indices that take account of the weights given to FNs and FPs are provided (Bloch 1997): risk 

(“expected loss”) and kappa, with significance tests for the differences between the tests.   

 

“Risk” expresses the probability that a test will yield false results (positive or negative), whereas 

kappa expresses the test's desirable properties (a low probability of false results).  Kappa ranges 

from 1 (no expected loss), through 0 (the loss expected by chance alone) to -1 (more loss than 

expected by chance).  

 

Both indices apply to use of the test in a group or population with a specific defined disease 

prevalence; this might be 40%, for example, in a selected tertiary hospital population, and only 1% 

in a primary care setting.  The assumed disease prevalence should be entered, unless the combined 

samples of cases and noncases are representative of the target population.   

 

The comparisons based on the two indices may be expected to yield similar conclusions, unless the 

probabilities of positive findings are very different for the two tests.  The significance tests are 

based on normal approximations, and should be treated with caution if samples are small; this 

applies especially to the tests for kappa. 

 

FP:TP ratios 
 

If the tests were applied to the same subjects, but “gold standard” tests were done only if results 

were positive, FP:TP ratios (false-positive:true-positive ratios) may be computed.  They are not 

provided if a comparison of sensitivities and false positive rates clearly suggests that (ignoring 

considerations of cost, convenience, etc.) one test is superior to the other, e.g. with a higher 

sensitivity and a lower false positive rate, or if the total number of subjects tested is not entered. 

(The FP:P ratio is not displayed if one ofthe tests is both more sensitive and more specific. 

 

The FP:TP ratio (Chock et al. 1997)  is an estimate of the number of extra false positives that 

would be detected in a target population with a defined disease prevalence when the test with a 

higher sensitivity is used, for each extra true positive found, in comparison with the other test.  

Estimates are provided for disease prevalences of 50, 20, 10, 5 and 1 per 1000, and a formula is 

provided for making estimates for other prevalences.   
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The FP:TP ratio may be helpful if a test attains a higher sensitivity at the expense of a higher false-

positive rate; the ratio then expresses the trade-off to be considered when deciding which test to 

use.   

 

The estimates of FP:TP ratios assume that the tests are independent, and that all subjects who are 

negative on both tests are non-diseased. 

 

Equivalence test 

 

This test compares the two tests with respect to their proportions of results (positive or negative) 

that accord with the “gold standard” (Liu et al. 2002), after entry of  the largest difference that is to 

be regarded as negligible (e.g. 0.05).  Paired data are required (e.g., “Test A correct, Test B 

incorrect”). 

 

Two null hypotheses are tested.  These are the hypotheses that there is more than a specified  

“negligible” difference in each direction – i.e., that the first proportion is more than negligibly 

higher than the first, and that the second is more than  negligibly higher than the first.   If both tests 

yield significant results, this supports the alternatives to the null hypotheses, namely that both 

these one-sided differences are negligible – that is, the proportions are equivalent.  If only one test 

is significant, this indicates that one proportion is at least as high as the other.  The larger of the 

two P values is displayed as the P value for the equivalence test (Liu et al. 2002). 

 

Combined tests 
 
If the two tests were used in the same subjects, the program appraises a combination of the tests. 

 

If “gold standard” tests were used for all subjects, sensitivity, specificity and the post-test 

probability of positive results for a combination of the  tests are computed, conditional on whether 

the overall result is seen as positive if either test is positive, or only if both tests are positive.  

These are the approaches sometimes termed “SPIN”  (“SPecific: Positive result rules IN disease”) 

or “Believe the positive”, and “SNOUT” (“SeNsitive: Negative result rules OUT disease”) or 

“Believe the negative”.  For the first approach, alternative results are presented, depending on 

whether both tests are always done, or whether performance of Test A depends on the result of 

Test B or vice versa.  The second approach is conditional on performance of both tests 

 

If “gold standard” tests were restricted to subjects with positive results, the program computes the 

relative sensitivity and  relative false positive rate of the combined tests (taking the result as 

positive if either test is positive) , in comparison with each test separately.  The results apply to 

performance of both tests in parallel, or to performance of both tests only if the first is negative. 

 

METHODS 
 

Characteristics of the tests 
 

The formulae are: 

Sensitivity % = a / (a + c) * 100  

Chance-corrected sensitivity  = 100 + [(Se - 100) /  Sp]  

Specificity % = d / (b + d) * 100 

Chance-corrected specificity = 100 + [(Sp - 100) /  Se] 

False positive rate % = b / (b + d) * 100 

 Youden's index = Se + Sp – 100 
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            Diagnostic odds ratio = Se * Sp / (100 – Se) / (100 – Sp) 

Likelihood ratio for a positive result =  Se / (100 - Sp) 

Likelihood ratio for a negative result = (100 - Se) / Sp 

Post-test probability (positive test) = (Se.DP) / [Se.DP + (100 - Sp)(100 - DP)]  

Post-test probability (negative test) = (Sp.DP) / [(100 - Se)DP) + Sp(100 - DP)] 
where  a = positive result in subjects in whom the disease [or other attribute] is present 

 b= positive result in subjects in whom the disease [or other attribute] is absent  

 c = negative result in subjects in whom the disease [or other attribute] is present 

d = negative result in subjects in whom the disease [or other attribute] is absent 

 Se and Sp = sensitivity and specificity (expressed as percentages). 

DP is the disease prevalence per 100 

Negative chance-corrected values (indicating less than chance expectation) are reported as zero. 

 

If the tests were done in different samples, the sensitivity or specificity that is entered may be revised, to make it 

consistent with a whole-number numerator.  This is done if the entered value differs from the sensitivity or specificity 

obtained by rounding its numerator (calculated from the entered value and the size of the sample in which it was 

determined) to the nearest integer.  The revised value is the sensitivity or specificity computed from the rounded-off 
numerator. 

 

Comparison of sensitivities, false positive rates, specificities, and predictive values.   

 
If the tests were done on the same subjects, McNemar tests are used to appraise their differences in sensitivity and 

specificity (Chock et al. 1997). 
 

Relative sensitivity and the relative false positive rate, and their 95% confidence intervals, are computed by formulae 1 

to 3 of Cheng et al. (2000).  Analogous formulae are used for relative specificity. 

 

Confidence intervals for the differences in sensitivity, in false positive rates, and in specificity are based on  the 

Wilson procedure (Newcombe and Altman 2000: 46-47).  If the tests were used on the same subjects, Wald 95% 

confidence intervals are reported  (Wenzel and Zapf  2013: p. 709). 

 

The tests for differences between positive predictive values and between negative predictive values are described by 

Kosinski 2013), and illustrated by the detailed numerical example presented in his paper. 

 

Comparison of Youden’s indices 
 
If  the two tests were used in different subjects, statistical significance is calculated by formula 11 of Chen et al. 

(2015), and confidence limits by formula 12. If the two tests were used in the same subjects, formulae 23 and 24 are 

used. 

 

Brier skill scores 
 
The general formula for the Brier score (from which the Brier skill score is derived) is  

  ∑ (Pi - Di)
2 
/N 

where  N = number of observations 
 Pi = prediction for subject i (probability, between 0 and 1) 

 Di = observed status of subject i (between 0 and 1) 

 

Since in this instance Pi = 0 (for a negative test result) or 1 (for a positive test result) and Di = 0 (disease [or other 

attribute] absent) or 1 (disease present), the formula for the Brier score reduces to 

    (False positives + false negatives) / N. 

Confidence intervals for this proportion are estimated by Wilson's method (Newcombe and Altman 2000: 46-47). 

 

The formula for the Brier skill score(Steyerberg et al. 2010) is 

100(1 - B / F) 

where  B = Brier score  

 F = P * (1 - P) 
 P = proportion with the disease 
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Confidence intervals are estimated by substituting the confidence limits of the Brier score for B. 

 

The difference between the Brier skill scores for the two tests is appraised by a McNemar test based on a cross-

classification in which each test's results are classified as either true or false. 

 

Choice of a test 
 

The method is described by Vickers et al. (2013). The choice is based n the relative diagnostic value of the two tests 

(formula 3) and the proportion with the disease in the study sample. 

 

Risk (“expected loss”) and kappa 
 
Formulae are provided by Bloch (1997).  

 

Estimation and comparison of risk are based on formulae 3-8 if the combined samples are taken to be representative of 

the study population, and on formulae 9-15 if separate samples of cases and non cases are used.  

 

Estimation and comparison of kappa are based on formulae 18-20 or (if separate samples of cases and non-cases are 
used) formulae 21-26.  There are two misprints: in formula 25 the multiplier 

(pi - 1 + r)/(1 - pi) should be changed to (pi - 1 + r)/pi; and in the formula for P2 (page 81), Sp2 should be 

changed to (1 - Sp2).               

 
FP:TP ratios 
 

FP:TP ratios for target populations with various prevalences are estimated by formula 3.9 of Chock et al. (1997.  This 

formula requires estimates of the numbers of cases and noncases with two negative findings in the sampled population 

(d* and D*, respectively).   

 

The number of cases with two negative findings is estimated by the formula 

 d* = |b - c| / a 
where a = cases with both tests positive 

 b = cases with only Test A positive 

  c = cases with only Test B positive. 

This is based on the assumption that the two tests are independent when applied to the cases.  

 

The number of noncases with two negative findings, D*,  is estimated by subtracting the sum total of subjects whose 

results are entered, plus d*, from the total number of subjects tested. 

 
Equivalence test 
 

The program uses a test based on restricted maximum likelihood estimation (RMLE), without a continuity correction.  

This method, described by Nam (1997), has been evaluated and recommended by Liu et al. (2002),  who explain how 

to replace the standard errors in the basic formulae (formulae 4 and 5) with RMLE-based values. 

 

Combined tests 
 
The relative sensitivity of the combined tests, in comparison to Test A or Test B, is calculated by dividing the number 

of true positives for the combined tests  with the number of true positives for test A or B.  Different numbers of true 

positives for the combined tests are used,  depending on whether both tests are used or whether performance of the 
second test is conditional on the result of the first. 

 
Relative false-positive rates are calculated in the same way, using the  numbers of false positives. 
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L3.  META-ANALYSIS OF STUDIES OF A "YES-NO" 
SCREENING OR DIAGNOSTIC TEST 

 
This module is for use in meta-analyses of studies of the sensitivity and specificity of a "yes-no" 

screening or diagnostic test.  It compares and combines the study findings. It can be applied to 

measures of the presence or absence of any attribute, not necessarily a disease.  It can be used for a 

test that yields a range of results, if a single uniform cut-point is used to determine whether the test 

is positive or negative..  

 

Optionally, the studies can be divided into categories, e.g. in accordance with differences in the test 

procedure, the characteristics of the subjects, or the quality of the study.  The program then 

analyses each group of studies separately, as well as analysing the total set of studies.  The program 

can also appraise the effect of a covariate on the test’s accuracy. 

 

The required entries are sensitivity, specificity, and the sizes of the samples in which they were 

measured; that is, the number of "cases" (subjects who truly have the disease or attribute, according 

to some "gold standard") in whom sensitivity was measured, and the number of "noncases" in 

whom specificity was measured.  Optional extras are the study category (1, 2, etc.) and a covariate. 

 
The program compares the studies with respect to the test's sensitivity, specificity, likelihood 

ratios for positive and negative results, diagnostic odds ratio, Youden’s index, and the area 

under the ROC curve (C-statistic).  It displays forest plots for sensitivity, specificity, the 

diagnostic odds ratio, and Youden’s index, permitting visual appraisal of heterogeneity, as well as 

providing tests and measures of heterogeneity. 

 
Overall values of the measures of test performance are computed, for use if the differences are 

deemed small enough to justify this.  For sensitivity, specificity, and Youden’s index, it provides 

pooled and precision-weighted estimates; for likelihood ratios (for positive and negative results) it 

provides pooled, precision-weighted.,Mantel-Haenszel (fixed-effect) and Dersimonian-Laird 

(random-effects) estimates; for diagnostic odds ratios it provides pooled, Mantel-Haenszel, and 

Dersimonian-Laird estimates. 

 
The relationship between sensitivity and specificity is demonstrated in a scattergram, and a 

summary ROC curve  (summarizing this relationship) is fitted to the data.  The discriminative 

capacity of the test is summarized by the Q* index, which is the value of sensitivity and specificity 

at the point where (according to the summary ROC curve) these two proportions are equal.  If there 

are two or more groups containing 10 or more studies, the significance of differences between their 

Q* values is tested. 

 

To permit appraisal of the effect of a covariate, the program computes a linear regression equation 

that includes the covariate, and uses it to provide a graph comparing diagnostic odds ratios 

predicted from regression equations that do and do not include the covariate, as well as a graph 

comparing separate ROC curves computed for each study (taking the covariate into account). 
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Sensitivity and specificity 
 
To permit appraisal of the heterogeneity of the sensitivities and specificities reported in different 

studies, the ranges of their values are reported, forest plots are displayed (see example, below), and 

tests and measures of heterogeneity (see below) are provided.  The graphs show 95% confidence 

intervals, and results based on small samples (under 30) and larger samples are shown in different 

colours.  Here is an example: 

 

 
 

Optionally, a list of sensitivities and specificities with their 95% confidence limits is displayed.  

The sensitivities and specificities may differ slightly from the entered values, as the program 

recalculates them to reduce the effect of rounding-off. 

 

Two overall summary sensitivity and specificity values are computed and displayed in the graphs 

(on the right, in red and blue), with their 95% confidence intervals.  One overall value is obtained 

by pooling the studies' results (which is equivalent to weighting them by sample size), and the other 

by weighting them by the inverse of their variances (precision-weighting).   

 

The overall values may be useful if there is little heterogeneity, but otherwise their appropriateness 

has been questioned, especially in view of the possibility that  different studies may use different 

criteria (e.g., different degrees of abnormality) for the presence of the disease or other attribute 

under study (Irwig et al. 1995).  Sensitivity and specificity are generally inversely correlated, and 

meta-analytic procedures that take account of both sensitivity and specificity, such as the use of 

likelihood ratios, diagnostic odds ratios, or a summary ROC curve, are recommended. 

 

Relationship between sensitivity and specificity 
 
The program reports the correlation between sensitivity and specificity (Spearman’s rho), and 

provides a scattergram (see example, below) demonstrating the relationship between sensitivity and 

the false positive rate (100% minus specificity).  In the scattergram, results based on samples of 

different sizes are shown in different colours. 

 

 
 

A summary ROC curve is superimposed on the scattergram.  This is a curve, fitted to the data, that 

demonstrates the trade-off between sensitivity and specificity.  It is based on the principle that there 

is a linear relationship between the logit of sensitivity and the logit of the false positive rate; the 

program uses an equation based on ordinary unweighted least-squares regression (Moses et al. 



                                                                                                            L3.  META-ANALYSIS: “YES-NO” TEST 

99 

 

1993), a method that generally provides similar (but not identical) results to those using other 

regression equations; the unweighted analysis has the disadvantage that more importance is not 

given to larger studies, but it avoids a possible bias of a weighted analysis, which tends to give 

more weight to less to studies reporting less accuracy (Irwig et al. 1995).  The regression 

coefficients and their standard errors are reported, and the significance of the beta (slope) 

coefficient is tested. 

 

The closer the curve comes to the top left corner of the graph, where both sensitivity and specificity 

are 100%, the better the test.  For comparison, the graph also displays a dotted line representing the 

curve of a completely nondiscriminatory test.   A poor test will have a ROC curve close to this line. 

 

The ROC curve is a useful way of combining heterogeneous test results, on the assumption that the 

differences are due to variation in the thresholds used to define positive and negative results; unless 

this is so, its advantage is open to question (Deeks 2001a). 

 

Q* index 

 

The Q* index, which is the value of sensitivity and specificity at the point where (according to the 

summary ROC curve) these two proportions are equal, may be used as a summary measure of the 

discriminative capacity of the test (Moses et al. 1993: appendix).  Its value and estimated standard 

error are reported, and it is shown in the scattergram, as a small circle (see example, above).  

Unless the ROC curve is anomalous, Q* is the point at which the curve shoulders most closely to 

the desirable top left corner, although this may not be readily apparent because of the use of 

different scales in the X and Y axes of the graph. 

 

Q* should be used with caution, since in some situations it may lead to misinterpretation (Stengel 

et al. 2003); it hardly distinguishes highly sensitive but unspecific tests from worthless procedures, 

and tests with poor sensitivity may yield similar Q* values, regardless of their specificity. 

 

If there are two or more groups containing 10 or more studies, the significance of the differences 

between their Q* values is tested. 

 

Likelihood ratios 
 
The likelihood ratio is the ratio of the probability of a specific result in cases to its probability in 

noncases.  The program computes likelihood ratios for positive and negative tests (positive and 

negative likelihood ratios)  for each study, and reports the overall ranges.  Tests and measures of 

heterogeneity (see below) are provided.  Optionally, a list of the positive and negative likelihood 

ratios is displayed. 

 
Four overall summary measures are reported for each likelihood ratio, with their 95% confidence 

intervals.   Their use may be considered justifiable if there is little heterogeneity.   

 

The first overall value is obtained by simply pooling the studies' primary results; the second is 

based on precision-weighting (weighting by the inverse of the variance), and is not recommended if 

there are studies with small numbers of subjects or if the likelihood ratio is close to zero (Lui 2004: 

69); the third is a  Mantel-Haenszel (fixed-effect) estimate, and the fourth is a Dersimonian-Laird 

(random-effects) estimate.   The fixed-effect estimate is based on a homogeneity assumption, 

whereas the random-effects estimate takes account of unexplained sources of between-study 

heterogeneity.  But in situations where the random-effects estimate leads to important changes in 
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inferences, there is often so much heterogeneity that the value of both the fixed-effect and random-

effects estimates is questionable (Rothman and Greenland 1998: 667). 

 
A likelihood ratio greater than 10 or less than 0.1 indicates that the test will provide convincing 

diagnostic evidence, and a value greater than 5 or below 0.2  provides strong diagnostic evidence, 

whereas if the likelihood ratio is between 0.5 and 2 the test has little or no effect on the certainty of 

diagnosis (Jaeschke et al. 1994). 

 
Diagnostic odd ratios   

 

The diagnostic odds ratio (DOR) is a measure of a test’s discriminatory power that takes account of 

both sensitivity and specificity, but without distinguishing between the effects of sensitivity and 

specificity.  It is the ratio of the odds in favour of a positive result in subjects with the disease (or 

other attribute) to the odds in favour of a positive result in subjects without the disease, and is 

equivalent to the ratio of the likelihood ratios for positive and negative test results. A value of 1 or 

less means that the test has no discriminatory value.  The DOR rises with increasing sensitivity or 

specificity, rising steeply as sensitivity or specificity becomes near perfect (Glas et al. 2003), and 

reaching infinity if both sensitivity and specificity are 100%. If both are 70%, the DOR is  5.4; if 

both are 80%, the DOR is 16; if both are 90%, the DOR is 81; if both are 95%, the DOR is 361; and 

if both are 99%, the DOR is 9801. 

 

The program computes the diagnostic odds ratio for each study, reports the overall ranges, displays 

a forest plot (see example, below), and provides tests and measures of heterogeneity.  Optionally, a 

list of the diagnostic odds ratios is displayed.  The graphs show 95% confidence intervals, and 

results based on samples of different sizes are shown in different colours.  Mantel-Haenszel and 

random-effects estimates are shown in red and blue. 

 

Reasonable consistency of the diagnostic odds ratios suggests that they could have originated from 

the same ROC curve (Deeks 2001a). 

 

 
 

Youden’s index 
 
Youden's index is the sum of sensitivity and specificity (expressed as percentages) minus 100.  It 

has been termed the "per cent gain in certainty" (Connell and Koepsell 1985), and is the “maximum 

proportional reduction in expected regret”, i.e. the maximum possible reduction of diagnostic 

uncertainty, whatever the pretest probability of the disease (or other attribute) (Hilden and Glasziou 

1996). A Youden's index of 0 means that the test outcome is independent of the presence of the 

disease, and the test is useless; if Youden's index is less than 0, the test is misleading. 

 

An advantage of the use of Youden’s index in meta-analyses is that it is not much affected by 

differences between studies in the threshold or cutting-point used to distinguish between diseased 

and healthy subjects, i.e. by the use of different definitions of the disease (Bohning et al. 2007). 
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The program computes Youden’s index and its 95% confidence interval for each study, reports the 

overall ranges, displays a forest plot (see example, below), and provides a Mantel-Haenszel 

estimate.  The graph shows 95% confidence intervals, and results based on samples of different 

sizes are shown in different colours; the Mantel-Haenszel estimate is shown in red. 

 

 
 

The area under the ROC curve is computed from Youden’s index (Hilden and Glasziou 1996), for 

each study and for the combined (Mantel-Haenszel) estimate. The area under the ROC curve 

expresses the probability that the test will correctly rank a randomly chosen person with the disease 

and a randomly chosen person without the disease.  Its value is 50% if the test does not 

discriminate.  As a rough guide, an area of  97% or more indicates excellent discriminatory power; 

an area of at least 92% very good discriminatory power, and an area of at least 75% good 

discriminatory power (Simon 2004). 

 

Effect of a covariate 
 

The program permits entry of a covariate that may influence the test’s accuracy.  This might be (or 

example) a numerical measure of some characteristic of the subjects or of the quality of the study.  

The program then fits a regression equation that includes the covariate to the data (using least-

squares regression, without weighting).  This equation is used to predict a diagnostic odds ratio for 

each study, for comparison with the diagnostic odds ratio predicted from a regression equation that 

does not include the covariate.  The exponential of the regression coefficient for the covariate is 

reported, as an indication of the multiplicative effect of the covariate on the diagnostic odds ratio 

(Deeks 2001b) . 

 

If the studies have been divided into two categories, or three or more ordered categories that can be 

regarded as equally spaced, it may be helpful to repeat the analysis, entering the category number 

as a covariate. If there are two categories – studies with and without some feature – the exponential 

of the regression coefficient for the covariate indicates the multiplicative effect of the feature on the 

diagnostic odds ratio. 

 

The pairs of odds ratios are shown in a graph;  if the values do not coincide, as in the following 

figure, this indicates that the covariate affects the test’s accuracy.  The odds ratios based on models 

that do and do not include the covariate are shown in purple and yellow respectively.  The graph 

also shows the observed diagnostic odds ratios (colour-coded according to sample size) if they 

differ from the predicted values, and (on the right) Mantel-Haenszel and random-effects estimates. 
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As suggested by Moses et al.(1993), the regression equation is also used as a basis for a separate 

ROC curve for each study, taking account of the value of the covariate in the study together with 

the information in the summary ROC curve.  These curves, which are displayed in a graph (colour-

coded in accordance with sample size), will be close or superimposed if the covariate has little or 

no effect on accuracy.  In the following example, the covariate is seen to have a strong effect. 

 

 
 

Heterogeneity tests and measures  
 
The heterogeneity tests (for sensitivity, specificity, likelihood ratios, and diagnostic odds ratios) 

should be interpreted with caution, since their power is low; if the result is significant at the 0.05 

level, the hypothesis of homogeneity can be rejected; but "a high p-value ... does not show that the 

measure is uniform, it only means that heterogeneity ... was not detected by the test" (Rothman and 

Greenland 1998: 276). 

 
Two measures of heterogeneity are provided: H and I-squared, with their approximate 95% 

intervals.  An H value of less than 1.2 suggests absence of noteworthy  heterogeneity, whereas a 

value exceeding 1.5 suggests its presence, even if the heterogeneity test is not significant.  I-

squared expresses the proportion of variation that can be attributed to heterogeneity rather than to 

sampling error; a value greater than 50% may be considered substantial heterogeneity (Higgins and 

Green 2006). 

 

Graphs 
 
The forest plots and the scattergram described above are displayed for the total set of studies and (if 

the studies have been grouped) for each group of studies.  The graphs comparing predicted 

diagnostic ratios and comparing ROC curves are displayed only if a covariate has been entered. 

 

It is not possible to “zoom” or read the values in these graphs by clicking.  The graphs can be 

printed, copied to the clipboard for pasting elsewhere, or saved in bitmap (.BMP) files. 

 

A graph may disappear if the program is minimized and then restored.  To recover it, click on 

“Next graph” or “Back”, and then return to the required graph. 

 

METHODS 
 

To remove the effect of rounding-off of the entered sensitivities and specificities, they are recalculated after rounding 

their numerators (calculated from the entered data) off to the nearest integer. 

 
Sensitivity and specificity 
 
Confidence intervals for the individual sensitivities and specificities, and for the overall values calculated from the 

studies' pooled  numbers of true and false positives and negatives, are computed by the Wilson score-test method 

(Wilson 1927), as described by  Newcombe and Altman (2000:46-7). 
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The precision-weighted overall values are calculated by the formula 

Pw = ∑(Wi.Pi) / ∑Wi 
and its 95% confidence intervals are 

Pw - (1.96 /  √∑Wi) and Pw + (1.96 / √∑Wi) 

where Wi = 1 / variance of Pi = Ni / PiQi 

Pi = sensitivity = a / (a + c) (calculated after adding 0.5 to a and c if either is 0) 

    or specificity = b / (b + d) (calculated after adding 0.5 to b and d if either is 0) 

Qi = 1 - Pi 
a = positive result in subjects in whom the disease [or other attribute] is present 

b = positive result in subjects in whom the disease [or other attribute] is absent  

c = negative result in subjects in whom the disease [or other attribute] is present 

d = negative result in subjects in whom the disease [or other attribute] is absent 

Ni = a + c (for sensitivity) or b + d (for specificity). 

 

Heterogeneity is tested by contingency table analysis (Zar 1998; 488-489).  If the sensitivities or specificities are all 

zero, or al 100, 0.0000001 is added to a zero denominator to avoid division by zero.   

 

The correlation between sensitivity and specificity is measured by Spearman’s rank correlation coefficient rho, 

allowing for ties (Siegel and Castellan 1988: 235-244), using an adaptation of the SPEAR procedure in Press et al. 
1989: 538-539.  If there are 30 or fewer studies, the significance of rho is appraised by the use of critical levels for one-

tailed P = 0.10, 0.05, 0.025, 0. 01, 0.005, and 0.001 (Siegel and Castellan 1988: Table Q).  If there are over 30 numbers, 

a t-test is used (Siegel and Castellan 1988: 243, footnote; Press et al. 1989: formula 13.8.2, p. 537). 

 

Summary ROC curve and Q* 
 
The summary ROC curve is based on an ordinary least-squares regression equation (Irwig et al. 1995: formula 1).  .  

Before computation, 0.5 is added to each of the four cells in the table to deal with the possibility of zero cells, as 

suggested by Moses et al. (1993) and Deville et al. (2002); this correction biases the curve conservatively, reducing the 

test's discriminatory capacity.  In rare instances, the ROC curve cannot be computed.. 

 
The regression equation is: 

D = α + βS 
where  D = log(diagnostic odds ratio) = logit(TPR) - logit(FPR)  

S = logit(TPR) + logit(FPR) 

TPR = sensitivity 

FPR = false positive rate 

α, β = regression coefficients 
 

Using the regression coefficients, a value of TPR is then computed for each value of FPR (Moses et al. 1993: formula 

1), and the results are plotted on a graph whose axes are sensitivity and the false positive rate.  The significance of β 

(the slope coefficient) is tested by formula 7.18 of Armitage et al. (2002). 

 

The ROC curve does not extend beyond the highest observed false positive rate. 

 
Q* and its standard error are computed by the formulae provided by Moses et al. (1993: 1314) 

 

Likelihood ratios 
 

The likelihood ratios for a positive test (LRP) and for a negative test (LRN) are ratios of proportions, and the estimation 

of confidence intervals for overall values and heterogeneity tests are based on procedures applicable to ratios of 

proportions (risk ratios). 

 LRP = sensitivity / (1 - specificity) 

 LRN = (1 - sensitivity) / specificity 
If sensitivity or specificity is 0 or 100%, 0.5 is added to the numbers of positive and negative tests before computation.  

 

The pooled LRP and LRN are based on the totality of the cumulated primary results. 

Their 95% confidence intervals use the log of the likelihood ratio  (Fleiss 1993, formula 29-35; Lui 2004, formula 4.2): 
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95% CI = exp(log(LR) - 1.96S)  to  exp(log(LR) + 1.96S) 

where S = standard error of log(LR) = √[1 / a – 1  /(a + c) + 1 / b – 1 / ( b+ d)] 
 LR = LRP or LRN 

       a = true positives (for LRP) or false negatives (for LRN) 

       b = false positives (for LRP) or true negatives (for LRN) 

 c = false negatives (for LRP) or true positives (for LPN) 

d = true negatives (for LRP) or false positives (for LRN) 

               

For the precision-weighted estimates and their confidence intervals, the logs of each study's  LR values are weighted by 

the inverse of their variances (Fleiss 1993, formulae 1, 2, 4;  Lui 2004, formula 4.9).   

 

The Mantel-Haenszel estimates of the overall likelihood ratios are computed by formulae 4.10 to 4.12 of Lui (2004), 
and the Dersimonian-Laird estimate by the formulae provided by Deeks (2000) and Deeks et al. (2001). 

 

The heterogeneity tests are based on a comparison with the Mantel-Haenszel estimate (Deeks 2000, Deeks et al. 2001), 

and use the adjustment suggested by Lipsitz et al. (1998) (formula 4.14 of Lui (2004).  The heterogeneity index and I-

squared are based on the unadjusted test statistic (Lui 2004: formula 4.13).    

 

Diagnostic odds ratios 
 

The diagnostic odds ratio is each study is calculated as  ad / bc 
where  a = positive results in cases, plus 0.5 

 b=  positive results in noncases, plus 0.5 

 c = negative results in cases, plus 0.5 

         d = negative results in noncases, plus 0.5 

Its standard error and 95% confidence interval are estimated by the logit method (Morris and Gardner 2000: 61). 

 

The pooled diagnostic odds ratio is based on the totality of the cumulated data.  The Mantel-Haenszel estimate and its 

95% confidence interval are computed by formulae provided by Deeks (2000) and Deeks et al. (2001), and the 

Dersimonian-Laird estimate and its 95% confidence interval by formulae 70-79 of Fleiss (1993).  Heterogeneity is 
tested by formula 22 of Fleiss (1993). 

 

Youden’s index 
 

The formula for Youden's index is  

Se + Sp - 1  

where  Se and Sp = sensitivity and specificity (expressed as proportions).  
 

The formula for its confidence interval is provided by Youden (1950) and cited by Salmi (1986). It is appropriate if the 

numbers of diseased and nondiseased are at least 20, and if the index is not very close to zero or one. 

 

The Mantel-Haenszel estimator is computed by formula 2, and its confidence  interval is based on formula 4, of 

Bohning et al. (2007). 

 

The area under the ROC curve is (Youden’s index + 1) / 2 (Hilden and Glasziou 1996, formula 26). 

 

Effect of a covariate 
 

The regression equation that includes the covariate (Moses et al. 1993) is: 

D = α + βS + γC 
where  D = log(diagnostic odds ratio) = logit(TPR) - logit(FPR)  

S = logit(TPR) + logit(FPR) 

C = covariate 

TPR = sensitivity 

FPR = false positive rate 

α, β, γ = regression coefficients 

Before computing TPR and LPR, 0.5 is added to each of the four cells in the table. 

The equation is computed by an adaptation of Abdusamad Salih’s Fortran MULREG multiple-regression program 

(Salih 2003), and standard errors of the regression coefficients by formula 17.5.3 of Snedecor and Cochran (1980). 
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Using this equation, a ROC curve is computed for each study, as described by Moses et al. (1993: 1310).  A value of 

TPR is computed for each value of FPR (Moses et al. 1993: formula 1), substituting (α + γC) for A, and  β  for B, in the 

formula, and the results are plotted on a graph whose axes are sensitivity and the false positive rate.  Occasionally the 

curves are not shown because the computation requires logs of a negative number. 

 
Heterogeneity measures 
 

The measures of heterogeneity,  H and I-squared, are described by Higgins and Thompson (2002).  H is computed by 

Higgins and Thompson's formula 6, and increased to 1, indicating absence of heterogeneity,  if it less than 1.  A test- 

based interval is computed by Method III.  I-squared and its 95% interval are computed from H, by formula 10. 
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L4.  APPRAISAL AND USE OF SCREENING/DIAGNOSTIC 

TESTS WITH A RANGE OF RESULTS 
 

This module is applicable to screening and diagnostic tests that yield a range of results. The test 

results may be quantitative (e.g. the concentration of a substance in the blood, or the number of 

diagnostic criteria or symptoms present) or qualitative (ordered categories, e.g. "no disease", 

"possible disease", "probable disease", and "definite disease").  The test may be for the presence or 

absence of any attribute, not necessarily a disease, but the program uses the term "disease" to refer 

to whatever target attribute or outcome the test aims to indicate. 

 
The direction of the test - that is, whether a high test result points to the presence of the target 

attribute or to its absence - must be specified.  A warning is shown if the data appear to be 

inconsistent with this direction. 

 

The observed frequencies of each result, in subjects with and without the disease (according to the 

“gold standard” diagnosis), are required.  If the results are qualitative, they must be allocated 

numbers that express their sequence (e.g. 1, 2, 3 etc.); if grouped ("binned") quantitative results 

(e.g. “5 to 9.99”) are entered, the lower limit may be entered as a label for the group.  Groups of 

tests with the same result can be entered together, or each test can be entered separately; the latter 

option may be convenient if individual (ungrouped) quantitative measurements (e.g. laboratory 

results) are to be entered. 

 

The prevalence of the disease in the target population, i.e. the pretest probability in the subjects 

tested, is required.  If it is not entered, it is estimated from the sample data, on the assumption that 

the combined samples are representative of the target population.  The required confidence level 

(for confidence intervals for the ROC curve) can be changed from its default value of 95%.   

 
The program displays a ROC curve, with confidence bounds, and computes the area under the 

ROC curve (C-statistic), with its standard error, confidence interval, and significance.   Partial 

areas under the ROC curve for specified ranges of specificity are also computed, with their 

standard errors and significance.  Measures of test performance are provided for specific test 

results (multilevel measures), for ranges of results (stratum-specific measures), and after 

dichotomizing the test results as “negative” or “positive” (using every possible cutpoint).  For each 

cutpoint, the program computes sensitivity, specificity, the diagnostic odds ratio, Youden's index, 

and likelihood ratios for positive and negative results, with the corresponding post-test 

probabilities.  Kullback-Leibler distances are used to estimate the extent to which the test can be 

expected to alter the odds in favour of correct decisions in "ruling in" positives or in "ruling out" 

negatives. The optimal cut-point is determined by four alternative methods, two of which take  

account of  the relative importance allocated to false negatives and false positives.   

 

 

ROC curve 
 

The ROC curve (receiver operating characteristics or relative operating characteristics curve) is 

displayed in a graph (see below).  The curve shows the association between the test's sensitivity (as 

a measure of the presence or absence, as appropriate, of the disease or other target attribute) and its 
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false positive rate (100% minus specificity %).  The curve is drawn as a series of straight lines 

joining the points representing the test's sensitivity and its false-positive rate at successive cut-

points, i.e., for every result entered  (although a staircase-like curve might sometimes be more 

appropriate).  The point on the curve closest to the top left corner of the graph is the point where 

the sum of sensitivity and specificity is highest. The closer this point is to the top left corner, the 

better the test, assuming that false negatives and false positives are equally important. 

 

The ROC curve is not influenced by the prevalence of the disease in the target population.  

 

A global confidence band is displayed for the ROC curve, unless there are fewer than 30 subjects 

with or without the disease; the lines are truncated at the edges of the graph, and occasionally, if the 

confidence interval is very wide, the whole of the upper line will be outside the area of the graph.  

This band is a simultaneous joint confidence region for sensitivity and the false positive rate 

(Campbell 1994), using the one-sample Kolmogorov-Smirnov test statistic.  The confidence level 

generated by this procedure is actually the square of the nominal confidence level that is requested 

(e.g. 90.25% if a confidence level of 95% is requested), but empirical tests indicate that the nominal 

confidence level is generally achieved (Macskassy and Provost 2004).  The method is conservative; 

at any point the confidence interval for sensitivity is wider than the confidence interval computed 

only for that single (preselected) point.  The results should be used with caution if the data in the 

two groups are not continuous and there are many ties (Campbell 1994). 

  

In addition to the ROC curve (shown in red) and its global confidence band (blue), the graph shows 

the straight line (in gray) that indicates absence of discriminatory capacity.   

 

 
 

The values can be read by clicking on the graph.  Accuracy can be enhanced by “zooming” – any 

segment of a curve can be magnified by pressing Ctrl and clicking on the graph, and then drawing a 

rectangle to outline the required segment.  The graph can be printed, copied to the clipboard for 

pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

Area under the ROC curve 
 

The area under the ROC curve expresses the probability that the test will correctly rank a randomly 

chosen person with the disease and a randomly chosen person without the disease.  Its value is 50% 

if the test does not discriminate.  As a rough guide, an area of 97% or more indicates excellent 

discriminatory power; an area of at least 92% very good discriminatory power, and an area of at 

least 75% good discriminatory power (Simon 2004). 

 

If the area exceeds 50%, its difference from 50% is tested. 

 

The standard error of the area under the curve, and its confidence interval, are reported.  The 

standard error is a slightly conservative estimate (Hanley and McNeil 1982). The confidence 

interval is approximate, unless the sample size is very large. 
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The area under the curve may be a biased measure of the test’s accuracy if the “gold standard” is a 

scale or set of ordered categories rather than a dichotomy, and an arbitrary dichotomy was used 

when entering the test results, or if two cutpoints were used (for defining subjects with and without 

the disease, respectively) and subjects between these cutpoints were omitted from the analysis 

(Obuchowski et al. 2004).  (An appropriate estimator of accuracy for use with a nondichotomous 

“gold standard” is provided by module D3 of the PAIRSetc program.) 

 

Partial areas under the ROC curve 
 
When comparing tests, a comparison of the global areas under their ROC curve may not be 

sufficiently informative, since the difference between the curves may vary in different ranges, and 

the global areas under the curves may be the same although there are differences in particular 

regions, or even if the curves cross.  The program therefore computes and compares partial areas 

under the ROC curve.  These are provided (with their standard errors) for specificity ranges of 70 to 

100%, 80 to 100%, and 90 to 100%.   They express the probability that a test in the given 

specificity range will correctly rank a randomly chosen person with the disease and a randomly 

chosen person without the disease.  Significance is tested by a comparison with chance expectation 

(i.e., with 4.5%, 2%, and 0.5% for the respective specificity ranges).  Standard errors and 

significance are not computed if the partial area is smaller than chance expectation. 

 

The computed partial areas may not always conform with the impression provided by the graph, 

since they are computed only from the sensitivities at the cut-points (i.e., they are based on a 

staircase-like curve), whereas in the graphs the points are joined by straight lines. 

 

Partial areas are not computed if the data appear to be inconsistent with the specified direction of 

the test. 

 

Other measures of test performance 
 

The likelihood ratio is the ratio of the prevalence of a specific result in subjects with the disease (or 

other target attribute) to its prevalence in people without the disease.  A value greater than 10 or 

less than 0.1 suggests that the test can provide convincing diagnostic evidence, effectively "ruling 

in" or "ruling out" a diagnosis; a value greater than 5 or below 0.2 can provide strong diagnostic 

evidence; whereas if the likelihood ratio is between 0.5 and 2 the test has little or no effect on the 

certainty of diagnosis (Jaeschke et al. 1994). Likelihood ratios are used to estimate the post-test 

probability of the disease, taking account of its pre-test probability (i.e., its prevalence in subjects in 

which the test is to be used). 

 

Likelihood ratios are computed for each specific result (multilevel likelihood ratios) if there are not 

more than 25 levels, and (if results are entered for at least four levels) for successive ranges of 

results (stratum-specific likelihood ratios). For the latter purpose, the total range is divided  into 

two to eight strata (depending on the number of levels entered), each spanning the same number or 

almost the same number of levels. The likelihood ratios for a range between two points corresponds 

to the slope of the ROC curve between those points (Choi 1998). “Not calculated” is displayed for 

ranges where zeros prevent the computation.  

For each cut-point that can be used to dichotomise the  results as “positive” or “negative”, the 

program computes sensitivity, specificity, the diagnostic odds ratio, Youden's index, and the 

likelihood ratios  for positive and negative results, with their 95% confidence intervals (binary 

likelihood ratios), and the corresponding post-test probabilities. For these purposes a positive result 
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is defined as a result at or above the cutpoint (if a high test result points to presence of the disease) 

or below the cutpoint (if a high test result points to absence of the disease). Sensitivity refers to the 

prevalence of positive results (using the specified cut-point) in subjects who have the disease (or 

other target attribute), and specificity refers to the prevalence of negative results in subjects without 

the disease. The likelihood ratio for positive results at a specific cutpoint represents the slope from 

the origin to a specific point on the ROC curve (Choi 1998). 

 

The diagnostic odds ratio (DOR) is a measure of the discriminatory power of a test (using the 

specified cut-point), taking account of both sensitivity and specificity, and without distinguishing 

between the effects of sensitivity and specificity.  It is the ratio of the odds in favour of a positive 

result in subjects with the disease (or other attribute) to the odds in favour of a positive result in 

subjects without the disease.  A value of 1 or less means that (using that cut-point) the test has no 

discriminatory value.  The DOR rises with increasing sensitivity or specificity, rising steeply as 

sensitivity or specificity becomes near perfect (Glas et al. 2003), and reaching infinity if both 

sensitivity and specificity are 100%. If both are 70%, the DOR is  5.4; if both are 80%, the DOR is 

16; if both are 90%, the DOR is 81; if both are 95%, the DOR is 361; and if both are 99%, the DOR 

is 9801.  

 

Youden's index (for a specific cut-point) is the sum of sensitivity and specificity (expressed as 

percentages) minus 100.  If has been termed the "per cent gain in certainty" (Connell and Koepsell 

1985).  

 

The post-test probability of presence of the disease  (which has obvious utility in clinical situations 

where the test is used to establish or rule out a diagnosis), conditional on the test result, is computed 

from the pretest probability and the likelihood ratio.   

 

The likelihood ratio  and post-test probability are not reported if results are entered separately (i.e, 

in separate lines) for subjects with and without the disease. 

 

Kullback-Leibler distances 
 

Kullback-Leibler distances, which are measures of the discrepancy between two probability 

distributions, are computed to indicate the extent to which performing a test can be expected to 

alter the odds in favour of correct decisions in "ruling in" positives or in "ruling out" negatives.  As 

suggested by Lee (1999), this may be helpful in situations where a choice must be made between 

tests.  The computation does not require information about the pretest probability. 

 
Optimal cut-point 
 

The program provides four methods for the choice of an optimal cut-point for continuous 

diagnostic or screening tests (i.e. the cut-point that minimizes errors): (a) the North-West corner, 

which is "the closest point in the ROC curve to the (0,1) point in terms of the Euclidean distance"; 

(b) the maximal Youden index, which is the point at which the sum of sensitivity and specificity is 

maximal;(c) the symmetry point, or point of equivalence, at which sensitivity and specificity are 

equal, and therefore "corresponds to the probability of correctly classifying any subject, whether it 

is healthy or diseased"; and (d) the concordance probability or "maximal accuracy area", which is 

the point at which the product of sensitivity and specificity are maximal - for a random pair of 

healthy and diseased subjects, this "coincides with the probability that the healthy subject is below 

the corresponding cut-point and the diseased subject is above that c-tpoint" [Lopez-Raton et al. 
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2016]. The calculation may yield anomalous cut-points if the ROC curve has an unusual shape. 

Cut-points are reported only if they fall between the lowest and highest values entered. 

 

These four methods may not provide identical results. The choice of the optimal cut-point is based 

on the sensitivities and specificities in the study sample. Especially if the sample is small, the 

results may not be the same as those in other target populations, even with the same pre-test 

probability (Altman 2000). Perkins and Schisterman(2006) advocate use of method (b) which 

provides the cut-point that maximizes the overall correct classification rate.   

 

The optimal cut-points can take account of the weights allocated to false negatives and false 

positives to express the relative undesirability or cost of the two kinds of error.  More weight can be 

given to the avoidance of false negatives (i.e., to sensitivity) if the aim is to detect all cases, and to 

false positives (i.e. specificity) if the aim is a definitive diagnosis of the presence of the disease.  

Best cut-points that take account of the relative weights given to false positives and false negatives 

are reported for methods (a) and (b). The cut-point also depends on the pre-test probability of the 

disease; it is the cut-point that minimizes expected costs (deaths, financial, emotional, etc.) in the 

target population.  

 

 

 

METHODS 
 
When the results are dichotomized, a positive result is defined as a result at or above a given level (if a high test result 

points to presence of the disease) or a result at or below a given level (if a high test result points to absence of the 

disease).  "Disease" refers to whatever attribute or outcome the test aims to indicate. 

 

Up to  1000 lines of data can be entered. 

 

ROC curve 
 

The ROC curve is drawn by joining the points marking the test's sensitivity and false positive rate at successive cut-

points (i.e., for very result entered). 

 

The global confidence band is a simultaneous joint confidence region based on the identification of independent global 
confidence intervals for sensitivity and the false positive rate, using the Kolmogorov-Smirnov one-sample statistic.   

 

The Kolmogorov-Smirnov critical values of d and e (for the numbers of subjects with and without the disease, 

respectively) at the required confidence level are identified from Table B9 of Zar (1998) or, if there are more than 40 

subjects in the group, computed by a formula given by Zar (p. App85) [the second of the formulae cited from Miller 

(1956)].  The method is illustrated by Hollander and Wolfe (1999).  For each cut-point, a rectangle with height 2d and 

width 2e is in effect created, centred on the point marking the test's sensitivity and false positive rate; the top left 

corners of these rectangles are joined to form the upper confidence limit, and the bottom right corners are joined to 

form the lower confidence limit; the lines are cropped to stay within ROC space (Campbell 1994, Macskassy and 

Provost 2004).   

 
Area under the ROC curve 
 

Formulae for computing the area under the ROC curve and its standard error (SE) are provided by Hanley and McNeil 

(1982: Table II).  The method is based on the Wilcoxon statistic, and is equivalent to the method using the trapezoidal 

rule; it provides an area slightly lower than that based on a maximum-likelihood technique, and a larger standard error, 

yielding a conservative confidence interval. 

 

Confidence limits for the area are estimating by adding or subtracting z.SE, where z = 1.96 for 95% limits, etc. 

 

The difference between the area under the curve and 50% (representing no discrimination) is tested by the formula 

(Beck and Schultz 1986) 



                                                L4.  SCREENING AND DIAGNOSTIC TESTS WITH A RANGE OF RESULTS 

111 

 

z  = (W - 0.5) / SEw 

where W = area under curve 

 SEw = its standard error. 

 

Partial areas under the ROC curve 
 
These areas are computed by a nonparametric method (Zhang et al. 2002: formula 5).  The areas and their standard 

errors are computed by the simple computational procedure described by Hanley and McNeil (1982), taking account 

only of those levels where the test’s specificity falls in the designated range. 

 

The difference between the area under the curve and the area c representing no discrimination is tested by the formula 

(Beck and Schultz 1986) 

z  = (W - c) / SEw 

where W = area under curve 

 SEw = its standard error 

 c = 0.045, 0.02, or 0.005, for specificity ranges of 70-100%, 80-100%, or 90-100% respectively. 

 

Other measures of test performance 
 

The likelihood ratio is the proportion of diseased subjects who have test results at a given level or in a given range, 

divided by the proportion of nondiseased subjects with the same test result (Simel et al. 1991). The likelihood ratios are 

ratios of proportions, and the estimation of their 95% confidence intervals are based on procedures applicable to ratios 

of proportions (risk ratios), using the formula  (Fleiss 1993, formula 29-35; Lui 2004, formula 4.2): 

95% CI = exp(log(LR) - 1.96S)  to  exp(log(LR) + 1.96S) 

where  LR = likelihod ratio 

S = standard error of log(LR) = √[1 / aa – 1  /Td + 1 / bb – 1 / Th] 

At a given cut-point, 

 sensitivity = a / (a + c) 

 specificity = d / (b + d) 
 false positive rate = b / (b + d), or 1 – sp 

 diagnostic odds ratio = Se * Sp / (1 - Se) / (1 - Sp) 

 Youden's index = Se + Sp – 1 

 likelihood ratio = Se / (1 - Sp) (conditional on a positive result) 

                                                or (1 - Se ) / Sp (conditional on a negative result) 

where  a = frequency of positive results in subjects in whom the target attribute is present 

 b = frequency of positive results in subjects in whom the target attribute is absent  

 c = frequency of negative results in subjects in whom the target attribute is present 

 d = frequency of negative results in subjects in whom the target attribute is absent 

 Se = sensitivity 

 Sp = specificity 

LR = likelihood ratio 
 PTP = pretest probability (prevalence) 

Post-test probability =  post-test odds / (1 + post-test odds) 

Where post-test odds := pretest odds x LR 

pretest odds = PTP / (1 – PTP) 

 

Kullback-Leibler distances 
 
Formulae are provided by  Lee (1999).  Results with zero "with disease" or "without disease" frequencies are omitted. 

 

 
Optimal cut-point 
 
North-West corner: The best cut-point based on the ROC curve and its closeness to the top left corner of the graph  

occurs where a line with the slope 

 m = [WFP(1 - PTP)] / [WFN.PTP] 
touches the ROC curve (Zweig and Campbell 1993) 

where  WFN = relative weight given to undesirability of false negatives 

 WFP = relative weight given to undesirability of false positives. 

This point is determined by identifying the cut-point that maximizes the value  Se - m(1 - Sp) 
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Maximal Youden index: The point at which the Youden index is highest (after adjustment for the relative weights given 

to the undesirability of false negatives and false positives, and for prevalence) (Perkins and Schisterman 2006). The 

point is determined  by identifying the point that minimizes the value [formula 4] 

 WFN/WFP * prevalence * (1 - sensitivity) + ((1 - prevalence) * (1 - specificity)) 
 
Symmetry point: The approximate point at which sensitivity and specificity are equal, (based on interpolation). 

 

Concordance probability: The point at which the product of sensitivity and specificity is highest. 
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L5.  COMPARISON OF SCREENING/DIAGNOSTIC TESTS THAT 
YIELD A RANGE OF RESULTS 

 

This module permits an exploratory comparison of two screening or diagnostic tests that yield a 

range of results;  the test results may be quantitative (e.g. the concentration of a substance in the 

blood, or the number of diagnostic criteria or symptoms present) or qualitative (ordered categories, 

e.g. "no disease", "possible disease", "probable disease", and "definite disease").  The tests may be 

for the presence or absence of any attribute, not necessarily a disease, but the program uses the term 

"disease" to refer to whatever target attribute or outcome the tests aim to indicate. 

The direction of the tests (do high test results point to the presence or the absence of the target 

attribute?) must be specified.  A warning is shown if the data seem to be inconsistent with this 

direction. The direction must be the same for both tests, or the analysis will be flawed. 

 

The data to be entered include the results of the tests and (optionally), the prevalence of the 

disease and (if both tests were applied to the same subjects) correlation coefficients between paired 

test results.  For each test. the observed frequencies of each result, in subjects with and without the 

disease (according to the “gold standard” diagnosis), are required.  If the results are qualitative, 

they must be allocated numbers that express their sequence (e.g. 1, 2, 3 etc.); if grouped ("binned") 

quantitative results (e.g. “5 to 9.99”) are entered, the lower limit may be entered as a label for the 

group.  An option is provided for the separate entry of the results of each test, in turn; this may be 

convenient if individual (ungrouped) quantitative measurements (e.g. laboratory results) are to be 

entered. 

 

An option is offered for the entry of only the areas under the two curves, with their standard errors 

and (optionally) with correlation coefficients.  The program then only compares the two areas. 

 

For each test, the program displays a ROC curve, with confidence bounds, and computes the area 

under the ROC curve, with its standard error, confidence interval, and significance.  Partial areas 

under the ROC curve for specified ranges of specificity are also computed.  Measures of test 

performance are provided for each specific test result (multilevel measures), for  ranges of results 

(stratum-specific measures), and after dichotomizing the test  results as “negative” or “positive” 

(using each possible cut-point). For each cut-point, the program computes sensitivity, specificity, 

the diagnostic odds ratio, Youden's index, and likelihood ratios for positive and negative results, 

with the corresponding post-test probabilities.  Kullback-Leibler distances are used to estimate 

the extent to which the testsscan be expected to alter the odds in favour of correct decisions in 

"ruling in" positives or in "ruling out" negatives.  The optimal cut-points are determined by two 

alternative methods, both of which take account of  the relative importance allocated to false 

negatives and false positives.   

 

The program also provides statistical tests comparing the two tests.  These compare the areas 

under the ROC curves (including equivalence tests), the partial areas under the ROC curves, and 

the sensitivities of the two tests at given specificities.  A graph is provided, showing both tests’ 

ROC curves, and displaying the significance of the differences between sensitivities. 
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Data to be entered 
 

For each test. the frequencies of each result, in subjects with and without the disease, are required.  

If the results are qualitative, they must be allocated numbers that express their sequence (e.g. 1, 2, 3 

etc.).  If grouped ("binned") quantitative results (e.g. 5 to 9.99) are entered, the lower limit may be 

entered as a label for the group.  An option is provided for the separate entry of each result of each 

test; this may be convenient if individual quantitative measurements (e.g. laboratory results) are to 

be entered. 

 

The prevalence of the disease in the target population, i.e. the pretest probability in the subjects 

tested, is required.  If it is not entered, it is estimated from the sample data, on the assumption that 

the combined samples are representative of the target population.  The required confidence level 

(for confidence intervals for the ROC curves) can be changed from its default value of 95%. 

 

A "same subjects" check-box is provided, to be marked if the tests were conducted on the same 

subjects.  The correlation coefficients (known or assumed) between the results of the paired tests 

can then be entered; module D1 of PAIRSetc  may be used to compute these coefficients.   If they 

are not entered, the program will display a series of results based on alternative degrees of 

correlation.  A warning is shown if the "same subjects" check-box is marked but the numbers of 

subjects are not the same for the two tests; the analysis is not aborted, as the tests may have been 

applied to overlapping, but not identical, groups of subjects. 

 

ROC curves 
 

A  ROC curve (receiver operating characteristics or relative operating characteristics curve) for 

each test is displayed in a graph (see below).  The curves are not influenced by the pretest 

[probability (prevalence) of the disease in the target population. 

 

   
 

In each graph, the curve shows the association between the test's sensitivity (as a measure of the 

presence or absence, as appropriate, of the disease or other target attribute) and its false positive 

rate (100% minus specificity %).  Each curve (shown in red for Test A and blue for Test B)  is 

drawn as a series of straight lines joining the points representing the test's sensitivity and its false-

positive rate at successive cut-points, i.e., for every result entered  (although a staircase-like curve 

might sometimes be more appropriate).  The point on the curve closest to the top left corner of the 

graph is the point where the sum of sensitivity and specificity is highest. The closer this point is to 

the top left corner, the better the test, assuming that false negatives and false positives are equally 

important. 

 

As seen above, a global confidence band is displayed (in green) for the ROC curve; it is not shown 

if there are fewer than 30 subjects with or without the disease.  Lines are truncated at the edges of 

the graph, and occasionally, if the confidence interval is very wide, the whole of the upper line will 

be outside the area of the graph.  The band is a simultaneous joint confidence region for sensitivity 

and the false positive rate (Campbell 1994), using the one-sample Kolmogorov-Smirnov test 
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statistic.  The confidence level generated by this procedure is actually the square of the nominal 

confidence level that is requested (e.g. 90.25% if a confidence level of 95% is requested), but 

empirical tests indicate that the nominal confidence level is generally achieved (Macskassy and 

Provost 2004).  The method is conservative; at any point the confidence interval for sensitivity is 

wider than the confidence interval computed only for that single (preselected) point.  The results 

should be used with caution if the data in the two groups are not continuous and there are many ties 

(Campbell 1994). 

 

In addition to the ROC curve and its global confidence band , the graph shows the straight line (in 

gray) that indicates absence of discriminatory capacity.   

 

The values can be read by clicking on the graph.  Accuracy can be enhanced by "zooming" - any 

segment of a curve can be magnified by pressing Ctrl and clicking on the graph, and then drawing a 

rectangle to outline the required segment.  The graph can be printed, copied to the clipboard for 

pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

Area under the ROC curve 
 

The area under each test's ROC curve expresses the probability that the test will correctly rank a 

randomly chosen person with the disease and a randomly chosen person without the disease.  Its 

value is 50% if the test does not discriminate.  As a rough guide, an area of 97% or more indicates 

excellent discriminatory power; an area of at least 92% very good discriminatory power, and an 

area of at least 75% good discriminatory power (Simon 2004). 

 

If the area exceeds 50%, its difference from 50% is tested. 

 

The standard error of the area under the curve, and its confidence interval, are reported. The 

standard error is a slightly conservative estimate (Hanley and McNeil 1982).  The confidence 

interval is approximate, unless the sample size is very large. 

 

The area under the curve may be a biased measure of the test’s accuracy if the “gold standard” is a 

scale or set of ordered categories rather than a dichotomy, and an arbitrary dichotomy was used 

when entering the test results, or if two cutpoints were used (for defining subjects with and without 

the disease, respectively) and subjects between these cutpoints were omitted from the analysis 

(Obuchowski et al. 2004).  (An appropriate estimator of accuracy for use with a nondichotomous 

“gold standard” is provided by module D3 of the PAIRSetc program.) 

 

Partial areas under the ROC curve 
 
When comparing tests, a comparison of the global areas under their ROC curve may not be 

sufficiently informative, since the difference between the curves may vary in different ranges, and 

the global areas under the curves may be the same although there are differences in particular 

regions, or even if the curves cross.  The program therefore computes and compares partial areas 

under the ROC  curve.  These are provided (with their standard errors) for specificity ranges of 70 

to 100%, 80 to 100%, 90 to 100%.   They express the probability that a test in the given specificity 

range will correctly rank a randomly chosen person with the disease and a randomly chosen person 

without the disease.  Significance is tested by a comparison with chance expectation (i.e., with 

4.5%, 2%, and 0.5% for the respective specificity ranges).  Standard errors and significance are not 

computed if the partial area is smaller than chance expectation. 
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The computed partial areas may not always conform with the impression provided by the graph, 

since they are computed only from the sensitivities at the cut-points (i.e., they are based on a 

staircase-like curve), whereas in the graphs the points are joined by straight lines. 

 

Partial areas are not computed if the data appear to be inconsistent with the specified direction of 

the test. 

 

Kullback-Leibler distances 
 

Kullback-Leibler distances, which are measures of the discrepancy between two probability 

distributions, are computed for each test, to indicate the extent to which the test can be expected to 

alter the odds in favour of correct decisions in "ruling in" positives or in "ruling out" negatives.  As 

suggested by Lee (1999), this may be helpful when a choice must be made between tests.  The 

computation does not require information about the pretest probability. 

 

Other measures of test performance 
 

The likelihood ratio is the ratio of the prevalence of a specific result in subjects with the disease (or 

other target attribute) to its prevalence in people without the disease.  A value greater than 10 or 

less than 0.1 suggests that the test can provide convincing diagnostic evidence, effectively "ruling 

in" or "ruling out" a diagnosis; a value greater than 5 or below 0.2 can provide strong diagnostic 

evidence; whereas if the likelihood ratio is between 0.5 and 2 the test has little or no effect on the 

certainty of diagnosis (Jaeschke et al. 1994). Likelihood ratios are used to estimate the post-test 

probability of the disease, taking account of its pre-test probability (i.e., its prevalence in subjects in 

which the test is to be used). 

 

Likelihood ratios are computed for each specific result (multilevel likelihood ratios) and (if results 

are entered for at least four levels) for successive ranges of results (stratum-specific likelihood 

ratios). For the latter purpose, the total range is divided  into two to four strata (depending on the 

number of levels entered), each spanning the same number or almost the same number of levels. 

The likelihood ratios for a range between two points corresponds to the slope of the ROC curve 

between those points (Choi 1998). 

For each cut-point that can be used to dichotomise the  results as “positive” or “negative”, the 

program computes sensitivity, specificity, the diagnostic odds ratio, Youden's index, and the 

likelihood ratios for positive and negative results (with their 95% confidence intervals) and the 

corresponding post-test probabilities. For these purposes a positive result is defined as a result at or 

above the cutpoint (if a high test result points to presence of the disease) or below the cutpoint (if a 

high test result points to absence of the disease). Sensitivity refers to the prevalence of positive 

results (using the specified cut-point) in subjects who have the disease (or other target attribute), 

and specificity refers to the prevalence of negative results in subjects without the disease.The 

likelihood ratio for positive results at a specific cutpoint represents the slope from the origin to a 

specific point on the ROC curve (Choi 1998). 

 

The diagnostic odds ratio (DOR) is a measure of the discriminatory power of a test (using the 

specified cut-point), taking account of both sensitivity and specificity, and without distinguishing 

between the effects of sensitivity and specificity.  It is the ratio of the odds in favour of a positive 

result in subjects with the disease (or other attribute) to the odds in favour of a positive result in 

subjects without the disease.  A value of 1 or less means that (using that cut-point) the test has no 

discriminatory value.  The DOR rises with increasing sensitivity or specificity, rising steeply as 
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sensitivity or specificity becomes near perfect (Glas et al. 2003), and reaching infinity if both 

sensitivity and specificity are 100%. If both are 70%, the DOR is  5.4; if both are 80%, the DOR is 

16; if both are 90%, the DOR is 81; if both are 95%, the DOR is 361; and if both are 99%, the DOR 

is 9801. 

 

Youden's index (for a specific cut-point) is the sum of sensitivity and specificity (expressed as 

percentages) minus 100.  If has been termed the "per cent gain in certainty" (Connell and Koepsell 

1985).  

 

The post-test probability of presence of the disease  (which has obvious utility in clinical situations 

where the test is used to establish or rule out a diagnosis), conditional on the test result, is computed 

from the pretest probability and the likelihood ratio.   

 

The likelihood ratio  and post-test probability are not reported if results are entered separately (i.e, 

in separate lines) for subjects with and without the disease. 

 

Optimal cut-points 
 

The program provides two methods for the choice of an optimal cut-point  (i.e. the cut-point that  

minimizes errors) for each test.  Both methods provide cut-points that vary with the weights 

allocated to false negatives and false positives to express the relative undesirability or cost of the 

two kinds of error.  More weight should be given to the avoidance of false negatives (i.e., to 

sensitivity) if the aim is to detect all cases, and to false positives i.e., (specificity) if the aim is a 

definitive diagnosis of the presence of the disease.  The optimal cut-point also depends on the pre-

test probability of the disease; it is thus the cut-point that minimizes expected costs (deaths, 

financial, etc.) in the target population. 

 

The choice of the optimal cut-point is based on the sensitivities and specificities in the study 

sample, which (especially if the sample is small) may of course not be the same as those in other 

target populations, even with the same pre-test probability (Altman 2000). 

 

The first method is based on the ROC curve, and the second on a comparison of the Youden indices 

at all possible cut-points. The two methods may not provide identical results. Perkins and 

Schisterman(2006) state that the second method, which provides the cut-point that maximizes the 

overall correct classification rate, is in some circumstances preferable 

 

Statistical tests comparing the two tests 
 

In addition to displaying a graph for each test, a graph showing both ROC curves is displayed, to 

permit visual comparison.  Triangular markers, shown at 5% intervals at the bottom of the graph, 

are colour-coded to indicate the presence and degree of statistical significance (adjusted for 

multiple testing; see below) between the sensitivities of the two tests: red if P < 0.001, blue if P < 

0.01, green if P < 0.05, and gray if P > 0.05. 
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The values can be read by clicking on the graph.  Accuracy can be enhanced by "zooming" - any 

segment of a curve can be magnified by pressing Ctrl and clicking on the graph, and then drawing a 

rectangle to outline the required segment.  The graph can be printed, copied to the clipboard for 

pasting elsewhere, or saved in a bitmap (.BMP) file. 

 

Statistical tests are performed, comparing the areas under the ROC curves, the partial areas under 

the ROC curves, and the sensitivities of the two tests at given specificities. 

 

The difference between the global areas under the two ROC curves is tested by the method of 

Hanley and McNeil (1982); one-tailed and two-tailed P values are reported.  If the tests were 

applied to the same subjects an adjustment is made, based on the correlation coefficients between 

the paired results, if these were entered.  If correlation coefficients were not entered, a table of 

alternative P values is displayed, relating to different possible levels of correlation (r); in the table, 

r refers to the mean of the correlation coefficient (Pearson or Kendall) for the paired test results in 

the diseased and the correlation coefficient for the paired results in the non-diseased (the latter 

correlation coefficient is usually lower).  Tests adjusting for correlation are not done if the mean of 

the two areas under ROC curves is less than 0.7. 

 

The significance tests comparing the partial areas under the two ROC curves,  for specificity 

ranges of 70 to 100%, 80 to 100%, and 90 to 100%, are conservative if the tests were applied to the 

same subjects, since they do not take account of possible correlation between the results.  These 

comparisons are not done if the data appear to be inconsistent with the specified direction of the 

two tests. 

 

The difference between the sensitivities of the two tests, i.e.. the vertical difference between the two 

ROC curves, is tested at fixed specificities at 5% intervals from 5% to 95%. The values required for 

this purpose are estimated by interpolation.  Different statistical tests are used, depending on 

whether correlation coefficients for the paired results were entered (because tests A and B were 

applied to the same subjects).  If these coefficients were entered, the significance test takes account 

of the correlation between results.  The P values are adjusted for multiple testing, using Hommel's 

procedure (1988).  Two-tailed P values are reported.   

 

The tests comparing partial areas for a given specificity range may not be consistent with those 

computed at fixed specificities within this range, since the former are computed only from the 

sensitivities at the cut-points (i.e., they are based on a staircase-like curve), whereas the latter use 

interpolation (i.e., they are based on the straight lines joining the points). 

 

Equivalence tests 
 
Statistical tests to appraise the equivalence of two screening or diagnostic methods may be helpful 

when a decision is required concerning the introduction of a new method (say a cheaper or more 

convenient one) in place of a standard method, using the area under the ROC curve as an indicator 

of accuracy. 

 

The program performs two one-tailed tests, each testing the noninferiority of one method.  The null 

hypothesis is that the selected method is less accurate than the other method (i.e., that the area 

under its ROC curve is smaller than the area under the other ROC curve), and a low P value 

indicates that the method is as accurate as, or more accurate than, the other method.  Interest will 

usually lie in the test for the noninferiority of the new method in comparison with the standard 
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method.  If both one-tailed tests yield significant results, the two methods can be regarded as being 

equivalent in their accuracy. 

 

For the purpose of these tests, the size of the difference (between areas under the curve) that can be 

regarded as negligible (the maximum acceptable difference) is defined first as 5%, and then as 1%. 

 

The tests are not done if there is a significant difference (P < 0.05) between the areas under the 

ROC curve. 

 

If  correlation coefficients between the paired results are entered, the tests are repeated, taking the 

correlation into account. 

 

METHODS 
 
When the results are dichotomized, a positive result is defined as a result at or above a given level (if a high test result 
points to presence of the disease) or a result at or below a given level (if a high test result points to absence of the 

disease).  "Disease" refers to whatever attribute or outcome the test aims to indicate. 

 
Up to 1000 lines of data can be entered. 

 
ROC curve 

 
The ROC curve is drawn by joining the points marking the test's sensitivity and false positive rate at successive cut-
points (i.e., for every result entered). 

 
The global confidence band is a simultaneous joint confidence region based on the identification of independent global 

confidence intervals for sensitivity and the false positive rate, using the Kolmogorov-Smirnov one-sample statistic.  

The Kolmogorov-Smirnov critical values of d and e (for the numbers of subjects with and without the disease, 

respectively) at the required confidence level are identified from Table B9 of Zar (1998) or, if there are more than 40 

subjects in the group, computed by a formula given by Zar (p. App85) [the second of the formulae cited from Miller 
(1956)].  The method is illustrated by Hollander and Wolfe (1999).  For each cut-point, a rectangle with height 2d and 

width 2e is in effect created, centred on the point marking the test's sensitivity and false positive rate; the top left 

corners of these rectangles are joined to form the upper confidence limit, and the bottom right corners are joined to 

form the lower confidence limit; the lines are cropped to stay within ROC space (Campbell 1994, Macskassy and 

Provost 2004).   

 
Area under ROC curve 

 
Formulae for computing the area under the ROC curve and its standard error (SE) are provided by Hanley and McNeil 

(1982). The method is based on the Wilcoxon statistic, and is equivalent to the method using the trapezoidal rule; it 

provides an area slightly lower than that based on a maximum-likelihood technique, and a larger standard error, 

yielding a conservative confidence interval. 

 

Confidence limits for the area are estimated by adding or subtracting z.SE, where z = 1.96 for 95% limits, etc.  

 
The difference between the area under the curve and 50% (representing no discrimination) is tested by the formula 

(Beck and Schultz 1986) 

z  = (W - 0.5) / SEw 
where W = area under curve 

 SEw = its standard error. 
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Partial areas under the ROC curve 
 
These areas are computed by a nonparametric method (Zhang et al. 2002: formula 5).  The areas and their standard 

errors are computed by the simple computational procedure described by Hanley and McNeil (1982), taking account 

only of those levels where the test’s specificity falls in the designated range. 

 
The difference between the area under the curve and the area c representing no discrimination is tested by the formula 

(Beck and Schultz 1986) 

z  = (W - c) / SEw 
where W = area under curve 

 SEw = its standard error 

 c = 0.045, 0.02, or 0.005, for specificity ranges of 70-100%, 80-100%, or 90-100% respectively. 

 
Other measures of test performance 

 
The likelihood ratio is the proportion of diseased subjects who have test results at a given level or in a given range, 

divided by the proportion of nondiseased subjects with the same test result (Simel et al. 1991). The likelihood ratios are 

ratios of proportions, and the estimation of their 95% confidence intervals are based on procedures applicable to ratios 

of proportions (risk ratios), using the formula  (Fleiss 1993, formula 29-35; Lui 2004, formula 4.2): 

95% CI = exp(log(LR) - 1.96S)  to  exp(log(LR) + 1.96S) 
where  LR = likelihod ratio 

S = standard error of log(LR) = √[1 / aa – 1  /Td + 1 / bb – 1 / Th] 

At a given cut-point, 
 sensitivity = a / (a + c) 

 specificity = d / (b + d) 

 false positive rate = b / (b + d), or 1 – sp 

 diagnostic odds ratio = Se * Sp / (1 - Se) / (1 - Sp) 

 Youden's index = Se + Sp – 1 

 likelihood ratio = Se / (1 - Sp) (conditional on a positive result) 

                                                or (1 - Se ) / Sp (conditional on a positive result) 

where  a = frequency of positive results in subjects in whom the target attribute is present 

 b = frequency of positive results in subjects in whom the target attribute is absent  
 c = frequency of negative results in subjects in whom the target attribute is present 

 d = frequency of negative results in subjects in whom the target attribute is absent 

 Se = sensitivity 

 Sp = specificity 

LR = likelihood ratio 

 PTP = pretest probability (prevalence) 

Post-test probability =  post-test odds / (1 + post-test odds) 

Where post-test odds := pretest odds x LR 

pretest odds = PTP / (1 – PTP) 
 
Kullback-Leibler distances 

 
Formulae are provided by  Lee (1999).  Results with zero "with disease" or "without disease" frequencies are omitted. 
 
Optimal cut-points 
 
Based on the closeness of each point on the relevant ROC curve to the top left corner of the graph,  the best cut-point 

occurs where a line with the slope 

 m = [WFP(1 - PTP)] / [WFN.PTP] 
touches the ROC curve (Zweig and Campbell 1993) 

where  WFN = relative weight given to false negatives 

 WFP = relative weight given to false positives. 

This point is determined by identifying the cut-point that minimizes the value 

 1 - Sp + (1 - Se) / m  
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Based on Youden indices, the best cut-point is that at which the Youden index is highest (after adjustment for the 

relative weights given to the undesirability of false negatives and false positives, and for prevalence)(Perkins and 

Schisterman 2006). The point is determined by identifying the point that minimizes the value (1 - WFN/WFP * 

prevalence * (1 - sensitivity)) + ((1 - prevalence) * (1 - specificity)) 

 

Statistical tests comparing the two tests 

 
The test comparing the global areas under the ROC curves (Hanley and McNeil 1982) uses the formula: 

z = (A1 - A2) / √(SE1
2
 + SE2

2
 - 2R.SE1.SE2) 

where  A1 and A2 = areas under the two ROC curves (Hanley and McNeil 1982) 

SE1 and SE2 = standard errors of areas under the two ROC curves (Hanley and McNeil 1982) 

R = measure of correlation between the two ROC curves. 

 

R (which is taken to be zero if the tests were administered to different subjects) is a function of (a) the mean of the 

areas under the ROC curves and (b) the mean of the two correlation coefficients (Pearson or Kendall), one for the 

paired test results in the diseased and one for the paired results in the non-diseased.  It is derived from Table 4 of 

Hanley and McNeil (1982), using interpolation in both directions.  The lowest mean area included in this table is 0.7, 

and P values allowing for correlation are not shown if the mean area is less than this. 

 

The comparisons of the partial areas under the two  ROC curves (Hanley and McNeil 1982) use a large-sample z-test: 

 z = (A1 - A2) / √(SE1
2
 + SE2

2
) 

where A1 and A2 = the corresponding partial areas under the two ROC curves 

 SE1 and SE2 = standard errors of the partial areas under the two ROC curves.  

 

To compare sensitivities at given specificities, the values are first determined by interpolation between the reported 

values.  At each specificity level, the number of true positives (for each test) is computed, and then rounded off to the 
nearest integer.  A significance test is then performed.  If correlation coefficients between the paired results were not 

entered, a chi-square test is used, with Haber's continuity correction, as modified by Ghent (Zar 1998: 494-495: formula 

23.9 and footnote).  If correlation coefficients were entered, the formula provided by Fleiss et al. (2003: 54: formula  

3.5) is used, but with the addition of a covariance term in the denominator (Warburton et al. 2002): 

z = abs(pA - pB) / √(pq * (1 / nA + 1 / nB) - 2r(sA.sB) 
where (at each level of specificity) 

pA and pB = sensitivities of tests A and B 
p = pooled estimate of sensitivity 

q = 1 - p 

nA and nB = numbers of diseased and nondiseased 

sA and sB = standard errors of sensitivities of tests A and B 

                   = √[pA(1 - pA) / (nA - 1)] and √[pB(1 - pB) / (nB - 1)] 
r = mean of the correlation coefficients for the paired test results in the diseased and the non-diseased. 

 
The P values are then adjusted to allow for multiple testing, using the procedure described by Hommel (1988). 

 

Equivalence tests 
 
The one-sided tests for appraising the noninferiority of each method are described by Obuchowski et al. (2004): 

z = [(A1 – A2) – D)]  / V and 

z = [(A2 – A1) – D)]  / V 
where  A1 and A2 = areas under the two ROC curves (Hanley and McNeil 1982) 

D = maximum acceptable difference (0.05 or 0.01) 

V = variance of difference between A1 and A2 

V is here defined as √(SE1
2
 + SE2

2
 - 2R.SE1.SE2) 

where SE1 and SE2 = standard errors of areas under the two ROC curves (Hanley and McNeil 1982) 

R = measure of correlation between the two ROC curves (see above). 

R  is taken to be zero if correlation coefficients were not entered. 
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M1.  PLOTTING OF AN EPIDEMIC CURVE BASED ON DATA 
 

This module can draw an epidemic curve plotting the occurrence of cases of a disease (or other 

incidents) over time.  It can be used to provide an ongoing record of an outbreak in progress, since 

the data that are entered are saved in a disk file for later retrieval and updating. 

 

If data are entered, the required dates are (preferably) the dates of onset of the disease.  Dates can 

be entered in any order, for single or grouped cases, and can be repeated.  The day of the month 

need not be entered if monthly or annual data are to be plotted, and the month need not be entered 

if annual data are to be plotted (the date is then taken as mid-month or mid-year).  Other dates can 

be entered and marked in the graph: namely the date of exposure (in the instance of a common-

source outbreak) and other key dates (e.g. the date on which intervention commenced).  The values 

of a covariate (e.g. temperature) dates can also be entered for plotting.  Data can be plotted by days, 

weeks, months (i.e., successive 30-day periods), or years (successive 365-day periods).  The graph 

extends from the first case (or a prior date of exposure, if entered) to the last case. 

 

If the date of exposure is entered, the program reports the minimum and average latent (incubation) 

periods (until occurrence of the first case and until the peak incidence, respectively). If a covariate 

is entered, the correlation of the covariate with incidence is reported.  

 

 

Epidemic curve 
 
The following example represents an outbreak of infectious hepatitis in individuals attending a luau 

at which a contaminated drink was consumed. (Philip et al. 1972). 

 

 
 
The numbers of cases can be read by clicking on the graph.  Accuracy can be enhanced by 

"zooming" (pressing Ctrl and clicking, and then drawing a rectangle to mark the required segment).  

The graph can be printed, copied to the clipboard, or saved in a bitmap (.BMP) file. 

 

METHODS 
 
Correlation of the covariate with incidence 
Spearman's rank-order correlation coefficient rho is computed by formula 13.8.5 of Press et al. (1989: 537), after using 

interpolation (if necessary) to obtain covariate values for the dates of disease onset; the significance of the coefficient is 

tested by formula 13.8.2.  Rho is not computed if the covariate is entered for fewer than three dates. 
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M2.  PLOTTING OF AN EPIDEMIC CURVE BASED ON A MODEL 
 

This module can plot an epidemic curve based on a simple Reed-Frost model or on a more 

elaborate SIR (Susceptible-Infective-Removed) or SEIR (Susceptible-Exposed-Infective-Removed) 

model.  It may be used to demonstrate the effects of the size and immunity status of the group or 

population, and other factors, on the expected scope of an epidemic.  The models are deterministic. 
 

The models apply to diseases that are transmitted by individual-to-individual contact.  They assume 

that contacts are random, that the group or population is homogeneous, and that it is closed; no 

allowance is made for additions, e.g. for births.  They also assume that recovery from the disease is 

followed by immunity.  Only the SEIR model takes account of a possible latent period, during 

which an infected individual is not yet infectious. 
 

In the Reed-Frost model, computation is based on the expected occurrences during each 

successive time unit (defined as the average period during which a case is infectious), and the 

model is particularly appropriate if the infectious period is short.  In the other two models, changes 

are estimated on a day-by-day basis. 
 

The basic information required for all three models is the size of the group or population, the 

prevalence of immunity at the start, and the number of cases (at least 1) at the start. 
 

The Reed-Frost model also requires entry of the probability that a case will have an effective 

contact, defined as a contact with another individual (susceptible or not) that would transmit the 

disease if the individual contacted was susceptible; this probability is assumed to be the same for all 

cases.  Optionally, the average number of days during which a case is infectious can be entered, so 

that the curve can be plotted by days rather than by successive time units. 
 

The more elaborate SIR model and SEIR model require entry of the average duration of 

infectiousness, and the average number of effective contacts (as defined above) in a day.  For the 

SEIR model, the average duration of the latent period is also required. 

 

The graph based on the Reed-Frost model displays the changing numbers of individuals who are 

susceptible who are infectious (labelled as "cases"), and who are immune.   

 

The graphs based on the SIR and Seir models display the changing numbers of individuals who are 

susceptible, who have a latent infection (SEIR model only), who are infectious (labelled as 

"cases"), and who are no longer infectious (labelled as "removed"). 

 

The estimated total number of cases, the peak prevalence, and the date of the peak are reported, and 

the immunity level required to prevent an epidemic (the threshold herd immunity) is computed.  

If a SIR or SEIR model is used, the basic reproductive ratio is reported. 
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Reed-Frost model 
 

The following specimen graph is based on the Reed-Frost model.  The graph displays the expected 

prevalence of susceptible individuals, cases (infectious individuals), and immune individuals 

(deaths are included in the immune group).  Optional information on the duration of the infectious 

period was entered. permitting the curves to be plotted by days, as in this example,  rather than by 

“time units”.  Only the dots in the graph are based on computed results; they express the expected 

prevalence at the end of the specified day or time unit.  Values along the connecting lines should be 

treated with reserve. 

 

 
 

The numbers of cases can be read by clicking on the graph.  Accuracy can be enhanced by 

"zooming" (pressing Ctrl and clicking, and then drawing a rectangle to mark the required segment).  

The graph can be printed, copied to the clipboard, or saved in a bitmap (.BMP) file. 

 

SIR model 
 

The graph (see example, below) displays the expected prevalence, day by day, of susceptible 

individuals, cases (infectious individuals), and individuals who have been "removed" (recovered 

and hence immune, or dead).  It covers the whole period of the epidemic (until the number of cases 

is zero), to a maximum of 1000 days.  If the expected prevalence of cases is relatively low, part or 

all of the "susceptible" curve may be off the chart (as in this example).  Curves are not displayed if 

the disease will not spread. 

 

 
 

The curves plotted by the program should be regarded as approximations.  Numbers are rounded 

off to the nearest integer before plotting (numbers below 0.5 are displayed as zero), and  a 

smoothing (flattening) procedure is used to eliminate the  irregularities that sometimes occur.  

Computational problems may prevent application of the model, usually when the average number 

of effective contacts per day is very high. 
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The numbers of cases can be read by clicking on the graph.  Accuracy can be enhanced by 

"zooming" (pressing Ctrl and clicking, and then drawing a rectangle to mark the required segment).  

The graph can be printed, copied to the clipboard, or saved in a bitmap (.BMP) file. 

 

SEIR model 
 

The graph (see example, below) displays the expected prevalence, day by day, of susceptible 

individuals, individuals with a latent infection (not yet infectious), cases (infectious individuals), 

and individuals who have been "removed" (recovered and hence immune, or dead).  It covers the 

whole period of the epidemic (until the number of cases is zero), to a maximum of 1000 days.  If 

the expected prevalence of infection is relatively low, part or all of the "susceptible" curve and/or 

the "removed" curve may be off the chart.  Curves are not displayed if the disease will not spread. 

 

 
 

The curves plotted by the program should be regarded as approximations.  Numbers are rounded 

off to the nearest integer before plotting (numbers below 0.5 are displayed as zero), and  a 

smoothing (flattening) procedure is used to eliminate the  irregularities that sometimes occur.  

Computational problems may prevent application of the model, usually when the average number 

of effective contacts per day is very high. 

 

The numbers of cases can be read by clicking on the graph.  Accuracy can be enhanced by 

"zooming" (pressing Ctrl and clicking, and then drawing a rectangle to mark the required segment).  

The graph can be printed, copied to the clipboard, or saved in a bitmap (.BMP) file. 

 

Basic reproductive ratio 
 

The basic reproductive ratio (Ro) is the average number of secondary cases caused by one 

infectious individual in a totally susceptible population.  If it is less than 1, the disease will not 

spread.   Its value is 2-3 for influenza, 2-5 for AIDS and SATS, 4-7 for mumps, 5-7 for polio and 

rubella, 6-7 for diphtheria and smallpox, and 12-18 for measles and pertussis. 

 

Threshold herd immunity 
 

If the Reed-Frost model is used, the threshold level of immunization required for herd immunity 

(i.e., to prevent spread) is computed from the size of the group or population and the probability of 

an effective contact.  There may be a discrepancy between this level, which is what is required to 

prevent spread to at least one case, and the curve plotted for a given level of immunity, where a 

fraction of a case (0.5 or more) is rounded up to one case. 
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If a SIR or SEIR model is used, the threshold level of immunization required for herd immunity is 

computed from the basic reproductive ratio, and is not influenced by the size of the group or 

population. 

 

METHODS 
 

Reed-Frost model 
 

At successive times subsequent to the start, the formulae are 

S[t]  = S[t-1] – C[t] 

C[t] = S[t-1] (1 – Q
C[t-1]

) 

I[t] = I[t-1] + C[t-1] 
where S  = number of susceptibles  

C = number of cases  

I  = number immune [or dead] 

t  = number of time units after the start, each time unit being the average  duration of infectiousness (converted  

      to days if this duration is entered) 

P = probability that a case will have a contact that can (if with a susceptible person) transmit the disease 

Q = 1 - P 

 
SIR model: 
 

The curves are based on the following three differential equations (Smith and Moore 2001), integrated by the fourth-

order Runge-Kutta method (Press et al. 1989: 602-507): 

 

For susceptibles, s[t]: 

ds / dt = -b.s[t].i[t], with an initial value s[0] of (N - c - m) / N; 
for cases (infectious), i[t]: 

      di / dt = b.s[t].i[t] - k.i[t], with an initial value i[0] of c; 
for removed (immune or dead), r[t]: 

      dr / dt = k.i[t], with an initial value r[0] of m; 
where  N = size of group/population 

c = number of cases at start / N  

m = proportion immune at start  

b = average number of effective contacts in a day 

k = 1 / average duration of infectiousness in days 

t = number of days after the start 

 

Computed numbers are rounded off to the nearest integer before plotting. 

 
SEIR model 
 

The curves for susceptible individuals, latent infections (not yet infectious), and cases (infectious individuals) are based 

on the following three differential equations (see e.g. Heesterbeek and Roberts 2000: formulae 1-3, but setting  μ 

[births, deaths] as zero), integrated by the fourth-order Runge-Kutta method (Press et al. 1989: 602-507): 

 

For susceptibles, s[t]: 

ds / dt = -b.s(t).i(t), with an initial value s(0) of (N - c - m) / N1; 
for latent cases (infected but not infective), l[t]: 

de / dt =  b.s[t].i[t] - a.(l[t], with an initial value i[0] of c; 
for cases (infected), i[t]: 

di / dt = a.l[t] - k.i[t], with an initial value i[0] of c; 
where  N = size of group/population 

c = number of cases at start / N 

m = proportion immune at start 

b = average number of effective contacts in a day 

k = 1 / average duration of infectiousness in days 
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a = 1 / average duration of latent period in days 

t = number of time units after the start 

       

The numbers of removed (immune or dead) individuals, r[t], are obtained by subtraction: 

r[t] = N – s[t] – l[t] – i[t] 

 
Computed numbers of cases are rounded off to the nearest integer. 

 
Basic reproductive ratio 
 

The formula for the basic reproductive ratio Ro is  

b  / k 
where  b = average number of effective contacts in a day 

k = 1 / average duration of infectiousness in days 

       
Threshold herd immunity 
 

The threshold level of immunization required for herd immunity is  

1 – (1 / Ro) 
where  Ro = basic reproductive ratio.  

 
If the Reed-Frost model is used, the threshold level of immunization is the level required to produce at least one case, 

using the formula 

1 – (1  / PN) 
where  P = probability that a case will have a contact that can (if with a susceptible person) transmit the disease 

  N = size of group/population 
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N.  SEQUENTIAL SAMPLING. 
 

This analysis aims to determine whether, during data collection, it can be concluded from the 

observations made so far, that the required mean or proportion in the sampled population is above 

(or equal to) a selected high value, or that it is below (or equal to) a selected low value. The result 

may signal a need for some action without further sampling, provided that the samples so far are 

randomly selected or reasonably representative, or it may indicate a need for further observations, 

singly or in groups. 
 

 

 
Sequential sampling 
 

This is a Bayesian technique, initially developed as a tool for product quality control. The analysis 

tests two alternative (to null) hypotheses: that the mean or proportion in the sampled population is 

above (or equal to) a selected high value, and that it is below (or equal to) a selected low value. One 

or neither of these hypotheses may be confirmed. 

 

The selected high and low values must be entered, as well as the desired significance and power, 

and the number of observations to date. 

 

If the analysis relates to a mean, it is also necessary to enter the mean of the observations to date, 

and an estimate of the standard deviation (which may be based on previous studies or a pilot study). 

 

An analysis relating to a proportion requires entry of the total number of "hits" so far (i.e., the 

numerator of the proportion, whose denominator is the number of observations so far).  A "hit" may 

be the occurrence of some event, e.g the onset of a disease or relapse or complication or recovery 

(in incidence studies) or the presence of a disease, feature, or practice etc. (in prevalence studies). 

 

 

METHOD 
 

The module applies Wald's sequential probability ratios test (Wald 1947), and is modelled on the 

SISA "Wald's Sequential Probability Ratios" program 

(http://www.quantitativeskills.com/sisa/statistics/sprt.htm).  

 

It uses the formulae in sections 9.1.1 and 9.1.3 of Krebs (2014: pp 380-384 and 390-392). 
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